\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Theory and applications of optimal control problems with multiple time-delays

Abstract / Introduction Related Papers Cited by
  • In this paper we study optimal control problems with multiple time delays in control and state and mixed type control-state constraints. We derive necessary optimality conditions in the form of a Pontryagin type Minimum Principle. A discretization method is presented by which the delayed control problem is transformed into a nonlinear programming problem. It is shown that the associated Lagrange multipliers provide a consistent numerical approximation for the adjoint variables of the delayed optimal control problem. We illustrate the theory and numerical approach on an analytical example and an optimal control model from immunology.
    Mathematics Subject Classification: Primary: 49J15; Secondary: 37N25, 37N40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. S. Angell and A. Kirsch, On the necessary conditions for optimal control of retarded systems, Appl. Math. Optim., 22 (1990), 117-145.doi: 10.1007/BF01447323.

    [2]

    A. Asachenkov, G. Marchuk, R. Mohler and S. Zuev, Disease Dynamics, Birkhäuser, Boston, 1994.

    [3]

    H. T. Banks, Necessary conditions for control problems with variable time lags, SIAM J. Control, 6 (1968), 9-47.doi: 10.1137/0306002.

    [4]

    Q. Chai, R. Loxton, K. L. Teo and C. Yang, A class of optimal state-delay control problems, Nonlinear Anal. Real World Appl., 14 (2013), 1536-1550.doi: 10.1016/j.nonrwa.2012.10.017.

    [5]

    Q. Chai, R. Loxton, K. L. Teo and C. Yang, A unified parameter identification method for nonlinear time-delay systems, J. Ind. Manag. Optim., 9 (2013), 471-486.doi: 10.3934/jimo.2013.9.471.

    [6]

    W. L. Chan and S. P. Yung, Sufficient conditions for variational problems with delayed argument, J. Optim. Theory Appl., 76 (1993), 131-144.doi: 10.1007/BF00952825.

    [7]

    F. Colonius and D. Hinrichsen, Optimal control of functional differential systems, SIAM J. Control Optim., 16 (1978), 861-879.doi: 10.1137/0316060.

    [8]

    S. Dadebo and R. Luus, Optimal control of time-delay systems by dynamic programming, Optimal Control Appl. Methods, 13 (1992), 29-41.doi: 10.1002/oca.4660130103.

    [9]

    R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, The Scientific Press, South San Francisco, California, 1993.

    [10]

    L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optimal Control Appl. Methods, 30 (2009), 341-365.doi: 10.1002/oca.843.

    [11]

    T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, J. Optimization Theory Appl., 18 (1976), 371-377.doi: 10.1007/BF00933818.

    [12]

    W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 87 (2000), 247-282.doi: 10.1007/s002110000178.

    [13]

    A. Halanay, Optimal controls for systems with time lag, SIAM J. Control, 6 (1968), 215-234.doi: 10.1137/0306016.

    [14]

    M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966.

    [15]

    S.-C. Huang, Optimal control problems with retardations and restricted phase coordinates, J. Optimization Theory Appl., 3 (1969), 316-360.doi: 10.1007/BF00931371.

    [16]

    G. L. Kharatishvili, Maximum principle in the theory of optimal time-delay processes, Dokl. Akad. Nauk. USSR, 136 (1961), 39-42.

    [17]

    D. Kern, Notwendige Optimalitätsbedingungen und numerische Lösungsmethoden für optimale Steuerprozesse mit Retardierungen, Diploma thesis, Westfälische Wilhelms-Universität Münster, 2005.

    [18]

    R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55 (2010), 2113-2119.doi: 10.1109/TAC.2010.2050710.

    [19]

    R. M. May, Time-delay versus stability in population models with two and three tropic levels, Ecology, 54 (1973), 315-325.doi: 10.2307/1934339.

    [20]

    A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, Translations of Mathematical Monographs, 180, American Mathematical Society, Providence, RI, 1998.

    [21]

    B. S. Mordukhovich and R. Trubnik, Stability of discrete approximations and necessary optimality conditions for delay-differential inclusions, Ann. Oper. Res., 101 (2001), 149-170.doi: 10.1023/A:1010968423112.

    [22]

    L. W. Neustadt, Optimization. A Theory of Necessary Conditions, Princeton University Press, Princeton, NJ, 1976.

    [23]

    M. N. Oǧuztöreli, Time-Lag Control Systems, Mathematics in Science and Engineering, 24, Academic Press, New York-London, 1966.

    [24]

    S. H. Oh and R. Luus, Optimal feedback control of time-delay systems, AIChE J., 22 (1976), 140-147.doi: 10.1002/aic.690220117.

    [25]

    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated from the Russian by K. N. Trirogoff, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.

    [26]

    W. H. Ray and M. A. Soliman, The optimal control of processes containing pure time delays-I, necessary conditions for an optimum, Chemical Engin. Science, 25 (1970), 1911-1925.doi: 10.1016/0009-2509(70)87009-9.

    [27]

    M. A. Soliman and W. H. Ray, Optimal control of multivariable systems with pure time delays, Automatica, 7 (1971), 681-689.doi: 10.1016/0005-1098(71)90006-9.

    [28]

    M. A. Soliman and W. H. Ray, On the optimal control of systems having pure time delays and singular arcs. I. Some necessary conditions for optimality, Int. J. Control (1), 16 (1972), 963-976.doi: 10.1080/00207177208932327.

    [29]

    R. F. Stengel, R. Ghigliazza, N. Kulkarni and O. Laplace, Optimal control of innate immune response, Optimal Control Appl. Methods, 23 (2002), 91-104.doi: 10.1002/oca.704.

    [30]

    R. F. Stengel and R. Ghigliazza, Stochastic optimal therapy for enhanced immune response, Mathematical Biosciences, 191 (2004), 123-142.doi: 10.1016/j.mbs.2004.06.004.

    [31]

    R. J. Vanderbei, LOQO: An interior point code for quadratic programming, Optim. Methods Softw., 11/12 (1999), 451-484.doi: 10.1080/10556789908805759.

    [32]

    R. J. Vanderbei and D. F. Shanno, An interior-point algorithm for nonconvex nonlinear programming, Comput. Optim. Appl., 13 (1999), 231-252.doi: 10.1023/A:1008677427361.

    [33]

    A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering, Ph.D thesis, Carnegie Mellon University in Pittsburgh, 2002.

    [34]

    A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.doi: 10.1007/s10107-004-0559-y.

    [35]

    J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(613) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return