Citation: |
[1] |
M. S. Aronna, J. F. Bonnans, A. V. Dmitruk and P. A. Lotito, Quadratic conditions for bang-singular extremals, Numer. Algebra Control Optim., 2 (2012), 511-546.doi: 10.3934/naco.2012.2.511. |
[2] |
M. S. Aronna, Second Order Analysis of Optimal Control Problems with Singular Arcs. Optimality Conditions and Shooting Algorithm, Ph.D thesis, ÉEcole Polytechnique Palaiseau, France, 2011. |
[3] |
C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen, Ph.D thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany, 1998. |
[4] |
C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control. SQP-based direct discretization methods for practical optimal control problems, J. Comput. Appl. Math., 120 (2000), 85-108.doi: 10.1016/S0377-0427(00)00305-8. |
[5] |
C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in Online Optimization of Large Scale Systems (eds. M. Gr\"otschel, S. O. Krumke and J. Rambau), Springer, Berlin, 2001, 3-16. |
[6] |
R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing, 1993. |
[7] |
M. Hestens, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966. |
[8] |
A. J. Krener, The high order maximum principle and its application to singular extremals, SIAM J. Control and Optimization, 15 (1977), 256-293.doi: 10.1137/0315019. |
[9] |
H. Maurer, Numerical solution of singular control problems using multiple shooting methods, J. Optimization Theory and Applications, 18 (1976), 235-257.doi: 10.1007/BF00935706. |
[10] |
H. Maurer, C. Büskens, J.-H. R. Kim and Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls, Optimal Control Appl. Methods, 26 (2005), 129-156.doi: 10.1002/oca.756. |
[11] |
H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach, SIAM J. Control and Optim., 41 (2002), 380-403.doi: 10.1137/S0363012900377419. |
[12] |
H. Maurer, T. Tarnopolskaya and N. L. Fulton, Singular controls in optimal collision avoidance for participants with unequal linear speeds, ANZIAM J., 53 (2012), C1-C19. |
[13] |
H. Maurer, T. Tarnopolskaya and N. L. Fulton, Optimal bang-bang and singular controls in collision avoidance for participants with unequal linear speeds, in 51st IEEE Conference on Decision and Control (CDC), Maui, USA, 2012, 7697-7702.doi: 10.1109/CDC.2012.6426792. |
[14] |
A. W. Merz, Optimal aircraft collision avoidance, in Proceedings of the Joint Automatic Control Conference, Paper 15-3, 1973, 449-454. |
[15] |
A. W. Merz, Optimal evasive manoeuvres in maritime collision avoidance, Navigation, 20 (1973), 144-152. |
[16] |
H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems, J. of Guidance, Control and Dynam., 13 (1990), 153-159.doi: 10.2514/3.20529. |
[17] |
N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control. Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, Advances in Control and Design, Vol. 24, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.doi: 10.1137/1.9781611972368. |
[18] |
N. P. Osmolovskii and H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. I. Main results, Control and Cybernetics, 34 (2005), 927-950; II. Proofs, variational derivatives and representations, Control and Cybernetics, 36 (2007), 5-45. |
[19] |
L. S. Pontryagin, W. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1965. |
[20] |
T. Tarnopolskaya and N. L. Fulton, Optimal cooperative collision avoidance strategy for coplanar encounter: Merz's solution revisited, J. Optim. Theory Appl., 140 (2009), 355-375.doi: 10.1007/s10957-008-9452-9. |
[21] |
T. Tarnopolskaya and N. L. Fulton, Parametric behavior of the optimal control solution for collision avoidance in a close proximity encounter, in 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation (eds. R. S. Andersson et al.), 2009, 425-431. |
[22] |
T. Tarnopolskaya and N. L. Fulton, Synthesis of optimal control for cooperative collision avoidance for aircraft (ships) with unequal turn capabilities, J. Optim. Theory Appl., 144 (2010), 367-390.doi: 10.1007/s10957-009-9597-1. |
[23] |
T. Tarnopolskaya and N. L. Fulton, Dispersal curves for optimal collision avoidance in a close proximity encounter: A case of participants with unequal turn rates, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2010, WCE 2010, IAENG, 2010, 1789-1794. |
[24] |
T. Tarnopolskaya and N. L. Fulton, Non-unique optimal collision avoidance strategies for coplanar encounter of participants with unequal turn capabilities, IAENG Int. J. Appl. Math., 40 (2010), 289-296. |
[25] |
T. Tarnopolskaya and N. L. Fulton, Synthesis of optimal control for cooperative collision avoidance in a close proximity encounter: Special cases, in Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), Vol. 18, Milano, Italy, 2011, 9775-9781. |
[26] |
T. Tarnopolskaya, N. L. Fulton and H. Maurer, Synthesis of optimal bang-bang control for cooperative collision avoidance for aircraft (ships) with unequal linear speeds, J. Optim. Theory Appl., 155 (2012), 115-144.doi: 10.1007/s10957-012-0049-y. |
[27] |
G. Vossen, Numerische Lösungsmethoden, Hinreichende Optimalitätsbedingungen und Sensitivitätsanalyse für Optimale Bang-Bang und Singuläre Steuerungen, Ph.D thesis, Institut für Numerische und Angewandte Mathematik, Universität Münster, Münster, Germany, 2005. |
[28] |
G. Vossen, Switching time optimization for bang-bang and singular controls, J. Optim. Theory Appl., 144 (2010), 409-429.doi: 10.1007/s10957-009-9594-4. |
[29] |
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.doi: 10.1007/s10107-004-0559-y. |