Citation: |
[1] |
D. P. Bertsekas and E. M. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem, in Nondifferential and Variational Techniques in Optimization, Math. Program. Stud., 17, Springer, Berlin-Heidelberg, 1982, 139-159. |
[2] |
D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compution, Numerical Methods, Prentice-Hall, Englewood Cliffs, 1989. |
[3] |
M. D'Apuzzo, M. Marino, A. Migdalas, P. M. Pardalos and G. Toraldo, Parallel computing in global optimization, in Handbook of Parallel Computing and Statistics (eds. E. J. Kontoghiorghes), Stat. Textb. Monogr., 184, Chapman & Hall/CRC, Boca Raton, FL, 2006, 225-258.doi: 10.1201/9781420028683.ch7. |
[4] |
J. Eckstein, Some saddle-function splitting methods for convex programming, Optimization Methods Software, 4 (1994), 75-83.doi: 10.1080/10556789408805578. |
[5] |
J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating direction method of multipliers, in Large Scale Optimization (Gainesville, FL, 1993), Kluwer Academic Publ., Dordoecht, 1994, 115-134. |
[6] |
F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003. |
[7] |
M. C. Ferris and J. S. Pang, Engineering and economic applications of comlementarity problems, SIAM Review, 39 (1997), 669-713.doi: 10.1137/S0036144595285963. |
[8] |
M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Comput. Optim. Appl., 1 (1992), 93-111.doi: 10.1007/BF00247655. |
[9] |
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Valued Problems (eds. M. Fortin and R. Glowinski), Studies in Mathematics and Its Applications, 15, Amsterdam, The Netherlands, 1983, 299-331.doi: 10.1016/S0168-2024(08)70034-1. |
[10] |
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Computers & Mathematics with Applications, 2 (1976), 17-40.doi: 10.1016/0898-1221(76)90003-1. |
[11] |
R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. |
[12] |
R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.doi: 10.1137/1.9781611970838. |
[13] |
D. R. Han, X. M. Yuan and W. X. Zhang, An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing, manuscript. |
[14] |
D. R. Han, X. M. Yuan, W. X. Zhang and X. J. Cai, An ADM-based splitting method for separable convex programming, Computational Optimization and Applications, 54 (2013), 343-369.doi: 10.1007/s10589-012-9510-y. |
[15] |
B.-S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities, Comput. Optim. Appl., 42 (2009), 195-212.doi: 10.1007/s10589-007-9109-x. |
[16] |
B.-S. He, L. Z. Liao, H. Yang and D. R. Han, A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92 (2002), 103-118.doi: 10.1007/s101070100280. |
[17] |
B.-S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl., 112 (2002), 111-128.doi: 10.1023/A:1013096613105. |
[18] |
B.-S. He, Y. Xu and X.-M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities, Comput. Optim. Appl., 35 (2006), 19-46.doi: 10.1007/s10589-006-6442-4. |
[19] |
B.-S. He, H. Yang and S. L. Wang, Altermating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optim. Theory Appl., 106 (2000), 337-356.doi: 10.1023/A:1004603514434. |
[20] |
B.-S. He, M. Tao and X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., 22 (2012), 313-340.doi: 10.1137/110822347. |
[21] |
B.-S. He, M. Tao, M. H. Xu and X.-M. Yuan, Alternating directions based contraction method for generally separable linearly constrained convex programming problems, manuscript, 2009. Available from: http://www.optimization-online.org/DB_HTML/2009/11/2465.html. |
[22] |
Z. K. Jiang and X. M. Yuan, New parallel descent-like method for sloving a class of variational inequalities, J. Optim. Theory Appl., 145 (2010), 311-323.doi: 10.1007/s10957-009-9619-z. |
[23] |
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Application, Pure and Applied Mathematics, 88, Academic Press, Inc., New York-London, 1980. |
[24] |
A. Migdalas, P. M. Pardalos and S. Storøy, eds., Parallel Computing in Optimization, Applied Optimization, 7, Kluwer Academic Publishers, Dordrecht, 1997. |
[25] |
A. Migdalas, G. Toraldo and V. Kumar, Nonlinear optimization and parallel computing, Parallel Computing, 29 (2003), 375-391.doi: 10.1016/S0167-8191(03)00013-9. |
[26] |
A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, International Series in Operations Research & Management Science, Vol. 2, Kluwer Academic Publishers, 1996.doi: 10.1007/978-1-4615-2301-7. |
[27] |
P. M. Pardalos and S. Rajasekaran, eds., Advances in Randomized Parallel Computing, Kluwer Academic Publishers, Dordrecht, 1999.doi: 10.1007/978-1-4613-3282-4. |
[28] |
J. Sun and S. Zhang, A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs, European J. Oper. Res., 207 (2010), 1210-1220.doi: 10.1016/j.ejor.2010.07.020. |
[29] |
K. Wang, D. R. Han and L. L. Xu, A parallel splitting method for separable convex programming, J. Optim. Theory Appl., 159 (2013), 138-158.doi: 10.1007/s10957-013-0277-9. |