April  2014, 10(2): 503-519. doi: 10.3934/jimo.2014.10.503

On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints

1. 

Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulation, Reinarzstr. 49, 47805 Krefeld, Germany

2. 

Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany

Received  December 2012 Revised  August 2013 Published  October 2013

A mathematical model for laser cutting with time-dependent cutting velocity is presented. The model involves two coupled nonlinear partial differential equations for the interacting dynamical behaviors of the free melt boundaries during the process. We define a measurement for the roughness of a cutting surface and introduce an optimal control problem for minimizing the roughness with respect to the cutting velocity and the laser beam intensity along the free melt surface. The optimal control problem involves an additional finite-dimensional averaging constraint. Necessary optimality conditions will be deduced and illustrated by means of numerical examples with data from industrial applications.
Citation: Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503
References:
[1]

M. K. Bernauer and R. Herzog, Optimal control of the classical two-phase Stefan problem in level set formulation,, SIAM J. Sci. Comput., 33 (2011), 342. doi: 10.1137/100783327. Google Scholar

[2]

R. Fourer, D. M. Gay and B. Kernighan, A modeling language for mathematical programming,, Management Science, 36 (1990), 519. Google Scholar

[3]

R. Friedrich, G. Radons, T. Ditzinger and A. Henning, Ripple formation through an interface instability from moving growth and erosion sources,, Phys. Rev. Lett., 85 (2000), 4884. Google Scholar

[4]

M. Hinze and S. Ziegenbalg, Optimal control of the free boundary in a two-phase Stefan problem,, J. Comput. Phys., 223 (2007), 657. doi: 10.1016/j.jcp.2006.09.030. Google Scholar

[5]

K. Hirano and R. Fabbro, Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel,, Physics Procedia, 12 (2011), 555. Google Scholar

[6]

K. Hirano and R. Fabbro, Possible explanations for different surface quality in laser cutting with 1 and 10 $\mu$m beams,, Journal of Laser Application, 24 (2012). Google Scholar

[7]

J. D. Jackson, Classical Electrodynamics,, 3rd Edition, (1999). Google Scholar

[8]

G. Lamé and B. D. Clapeyron, Mémoire sur la solidification par refroidissement d'un globe liquide,, Ann Chimie Physique, 47 (1831), 250. Google Scholar

[9]

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 6. Fluid Mechanics,, 2nd edition, (1987). Google Scholar

[10]

M. Nießen, Numerische Modellierung freier Randwertaufgaben und Anwendung auf das Laserschneiden,, (in German) Ph.D thesis, (2005). Google Scholar

[11]

R. Poprawe, W. Schulz and R. Schmitt, Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling,, Phys. Procedia, 5 (2010), 1. Google Scholar

[12]

S. Repke, N. Marheineke and R. Pinnau, On Adjoint-Based Optimization of a Free Surface Stokes Flow,, Fraunhofer ITWM Bericht, (2010). Google Scholar

[13]

W. Schulz, M. Nießen, U. Eppelt and K. Kowalick, Simulation of laser cutting,, in The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology (ed. J. M. Dowden), (2009). Google Scholar

[14]

W. Schulz, V. Kostrykin, M. Nießen, J. Michel, D. Petring, E. W. Kreutz and R. Poprawe, Dynamics of ripple formation and melt flow in laser beam cutting,, J. Phys D: Appl. Phys., 32 (1999), 1219. Google Scholar

[15]

K. Theißen, Optimale Steuerprozesse unter partiellen Differentialgleichungs-Restriktionen mit linear eingehender Steuerfunktion,, (in German) Ph.D thesis, (2006). Google Scholar

[16]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications,, Graduate Studies in Mathematics, (2010). Google Scholar

[17]

O. Volkov, B. Protas, W. Liao and D. W. Glander, Adjoint-based optimization of thermo-fluid phenomena in welding processes,, J. Eng. Math., 65 (2009), 201. doi: 10.1007/s10665-009-9292-0. Google Scholar

[18]

G. Vossen and J. Schüttler, Mathematical modelling and stability analysis for laser cutting,, Math. Comput. Model. Dyn. Syst., 18 (2012), 439. doi: 10.1080/13873954.2011.642387. Google Scholar

[19]

G. Vossen, J. Schüttler and T. Hermanns, Analysis and optimal control for free melt flow boundaries in laser cutting with distributed radiation,, submitted, (2011). Google Scholar

[20]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Math. Program., 106 (2006), 25. doi: 10.1007/s10107-004-0559-y. Google Scholar

show all references

References:
[1]

M. K. Bernauer and R. Herzog, Optimal control of the classical two-phase Stefan problem in level set formulation,, SIAM J. Sci. Comput., 33 (2011), 342. doi: 10.1137/100783327. Google Scholar

[2]

R. Fourer, D. M. Gay and B. Kernighan, A modeling language for mathematical programming,, Management Science, 36 (1990), 519. Google Scholar

[3]

R. Friedrich, G. Radons, T. Ditzinger and A. Henning, Ripple formation through an interface instability from moving growth and erosion sources,, Phys. Rev. Lett., 85 (2000), 4884. Google Scholar

[4]

M. Hinze and S. Ziegenbalg, Optimal control of the free boundary in a two-phase Stefan problem,, J. Comput. Phys., 223 (2007), 657. doi: 10.1016/j.jcp.2006.09.030. Google Scholar

[5]

K. Hirano and R. Fabbro, Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel,, Physics Procedia, 12 (2011), 555. Google Scholar

[6]

K. Hirano and R. Fabbro, Possible explanations for different surface quality in laser cutting with 1 and 10 $\mu$m beams,, Journal of Laser Application, 24 (2012). Google Scholar

[7]

J. D. Jackson, Classical Electrodynamics,, 3rd Edition, (1999). Google Scholar

[8]

G. Lamé and B. D. Clapeyron, Mémoire sur la solidification par refroidissement d'un globe liquide,, Ann Chimie Physique, 47 (1831), 250. Google Scholar

[9]

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 6. Fluid Mechanics,, 2nd edition, (1987). Google Scholar

[10]

M. Nießen, Numerische Modellierung freier Randwertaufgaben und Anwendung auf das Laserschneiden,, (in German) Ph.D thesis, (2005). Google Scholar

[11]

R. Poprawe, W. Schulz and R. Schmitt, Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling,, Phys. Procedia, 5 (2010), 1. Google Scholar

[12]

S. Repke, N. Marheineke and R. Pinnau, On Adjoint-Based Optimization of a Free Surface Stokes Flow,, Fraunhofer ITWM Bericht, (2010). Google Scholar

[13]

W. Schulz, M. Nießen, U. Eppelt and K. Kowalick, Simulation of laser cutting,, in The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology (ed. J. M. Dowden), (2009). Google Scholar

[14]

W. Schulz, V. Kostrykin, M. Nießen, J. Michel, D. Petring, E. W. Kreutz and R. Poprawe, Dynamics of ripple formation and melt flow in laser beam cutting,, J. Phys D: Appl. Phys., 32 (1999), 1219. Google Scholar

[15]

K. Theißen, Optimale Steuerprozesse unter partiellen Differentialgleichungs-Restriktionen mit linear eingehender Steuerfunktion,, (in German) Ph.D thesis, (2006). Google Scholar

[16]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications,, Graduate Studies in Mathematics, (2010). Google Scholar

[17]

O. Volkov, B. Protas, W. Liao and D. W. Glander, Adjoint-based optimization of thermo-fluid phenomena in welding processes,, J. Eng. Math., 65 (2009), 201. doi: 10.1007/s10665-009-9292-0. Google Scholar

[18]

G. Vossen and J. Schüttler, Mathematical modelling and stability analysis for laser cutting,, Math. Comput. Model. Dyn. Syst., 18 (2012), 439. doi: 10.1080/13873954.2011.642387. Google Scholar

[19]

G. Vossen, J. Schüttler and T. Hermanns, Analysis and optimal control for free melt flow boundaries in laser cutting with distributed radiation,, submitted, (2011). Google Scholar

[20]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Math. Program., 106 (2006), 25. doi: 10.1007/s10107-004-0559-y. Google Scholar

[1]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[2]

Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605

[3]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[4]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[5]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[6]

Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569

[7]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[8]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[9]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[10]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[11]

Lorena Bociu, Lucas Castle, Kristina Martin, Daniel Toundykov. Optimal control in a free boundary fluid-elasticity interaction. Conference Publications, 2015, 2015 (special) : 122-131. doi: 10.3934/proc.2015.0122

[12]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[13]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[14]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[15]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[16]

Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133

[17]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[18]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[19]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020033

[20]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]