-
Previous Article
Multimodal image registration by elastic matching of edge sketches via optimal control
- JIMO Home
- This Issue
-
Next Article
Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems
Manifold relaxations for integer programming
1. | College of Mathematics, Chongqing Normal University, Chongqing, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
References:
[1] |
M. Borchardt, An exact penalty approach for solving a class of minimization problems with Boolean variables,, Optimization, 19 (1988), 829.
doi: 10.1080/02331938808843396. |
[2] |
Q. Chai, R. Loxton, K. L. Teo and C. H. Yang, A max-min control problem arising in gradient elution chromatography,, Ind. Eng. Chem. Res., 51 (2012), 6137.
doi: 10.1021/ie202475p. |
[3] |
A. Edelman, T. A. Arias and S. Smith, The geometry of algorithms with orthogonality constraints,, SIAM J. Matrix Anal. Appl., 20 (1998), 303.
doi: 10.1137/S0895479895290954. |
[4] |
Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients,, IEEE Trans. on Signal Process., 56 (2008), 134.
doi: 10.1109/TSP.2007.901164. |
[5] |
Z. G. Feng, K. L. Teo and Y. Zhao, Branch and bound method for sensor scheduling in discrete time,, J. Ind. Manag. Optim., 1 (2005), 499.
doi: 10.3934/jimo.2005.1.499. |
[6] |
R. Fletcher, Practical Methods of Optimization,, 2nd edition, (1987).
|
[7] |
C. Helmberg and F. Rendl, Solving quadratic (0,1)-problems by semidefinite programming and cutting planes,, Math. Programming, 82 (1998), 291.
doi: 10.1007/BF01580072. |
[8] |
M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, Giovanni Rinaldi and L. A. Wolsey, eds., 50 Years of Integer Programming 1958-2008. From the Early Years to the State-of-the-Art,, Papers from the 12th Combinatorial Optimization Workshop (AUSSOIS 2008) held in Aussois, (2008), 7.
doi: 10.1007/978-3-540-68279-0. |
[9] |
B. Kalantari and J. B. Rosen, Penalty formulation for zero-one nonlinear programming,, Discrete Appl. Math., 16 (1987), 179.
doi: 10.1016/0166-218X(87)90073-4. |
[10] |
W. Murray and K.-M. Ng, An algorithm for nonlinear optimization problems with binary variables,, Comput. Optim. Appl., 47 (2010), 257.
doi: 10.1007/s10589-008-9218-1. |
[11] |
C.-K. Ng, L.-S. Zhang, D. Li and W.-W. Tian, Discrete filled function method for discrete global optimization,, Comput. Optim. Appl., 31 (2005), 87.
doi: 10.1007/s10589-005-0985-7. |
[12] |
P. M. Pardalos, O. A. Prokopyev and S. Busygin, Continuous approaches for solving discrete optimization problems,, in Handbook on Modelling for Discrete Optimization, (2006), 39.
doi: 10.1007/0-387-32942-0_2. |
[13] |
J. Richstein, Verifying the Goldbach conjecture up to $4\cdot 10^{14}$,, Math. Comp., 70 (2001), 1745.
doi: 10.1090/S0025-5718-00-01290-4. |
[14] |
K. Schittkowski, More Test Examples for Nonlinear Programming Codes,, Lecture Notes in Economics and Mathematical Systems, (1987).
doi: 10.1007/978-3-642-61582-5. |
[15] |
R. A. Shandiz and N. Mahdavi-amiri, An exact penalty approach for mixed integer nonlinear programming problems,, American Journal of Operations Research, 1 (2011), 185. Google Scholar |
[16] |
H. D. Sherali and W. P. Adams, A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems,, Discrete Appl. Math., 52 (1994), 83.
doi: 10.1016/0166-218X(92)00190-W. |
[17] |
S. Wang, K. L. Teo, H. W. J. Lee and L. Caccetta, Solving 0-1 programming problems by a penalty approach,, Opsearch, 34 (1997), 196.
|
[18] |
W.-Y. Yan and K. L. Teo, Optimal finite-precision approximation of FIR filters,, Signal Processing, 82 (2002), 1695.
doi: 10.1016/S0165-1684(02)00331-6. |
[19] |
K. F. C Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization,, J. Global Optim., 28 (2004), 229.
doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[20] |
K. F. C Yiu, W. Y. Yan, K. L. Teo and S. Y. Low, A new hybrid descent method with application to the optimal design of finite precision FIR filters,, Optim. Methods Softw., 25 (2010), 725.
doi: 10.1080/10556780903254104. |
[21] |
C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503.
doi: 10.1007/s10898-012-9858-7. |
[22] |
W. X. Zhu, Penalty parameter for linearly constrained 0-1 quadratic programming,, J. Optim. Theory Appl., 116 (2003), 229.
doi: 10.1023/A:1022174505886. |
show all references
References:
[1] |
M. Borchardt, An exact penalty approach for solving a class of minimization problems with Boolean variables,, Optimization, 19 (1988), 829.
doi: 10.1080/02331938808843396. |
[2] |
Q. Chai, R. Loxton, K. L. Teo and C. H. Yang, A max-min control problem arising in gradient elution chromatography,, Ind. Eng. Chem. Res., 51 (2012), 6137.
doi: 10.1021/ie202475p. |
[3] |
A. Edelman, T. A. Arias and S. Smith, The geometry of algorithms with orthogonality constraints,, SIAM J. Matrix Anal. Appl., 20 (1998), 303.
doi: 10.1137/S0895479895290954. |
[4] |
Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients,, IEEE Trans. on Signal Process., 56 (2008), 134.
doi: 10.1109/TSP.2007.901164. |
[5] |
Z. G. Feng, K. L. Teo and Y. Zhao, Branch and bound method for sensor scheduling in discrete time,, J. Ind. Manag. Optim., 1 (2005), 499.
doi: 10.3934/jimo.2005.1.499. |
[6] |
R. Fletcher, Practical Methods of Optimization,, 2nd edition, (1987).
|
[7] |
C. Helmberg and F. Rendl, Solving quadratic (0,1)-problems by semidefinite programming and cutting planes,, Math. Programming, 82 (1998), 291.
doi: 10.1007/BF01580072. |
[8] |
M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, Giovanni Rinaldi and L. A. Wolsey, eds., 50 Years of Integer Programming 1958-2008. From the Early Years to the State-of-the-Art,, Papers from the 12th Combinatorial Optimization Workshop (AUSSOIS 2008) held in Aussois, (2008), 7.
doi: 10.1007/978-3-540-68279-0. |
[9] |
B. Kalantari and J. B. Rosen, Penalty formulation for zero-one nonlinear programming,, Discrete Appl. Math., 16 (1987), 179.
doi: 10.1016/0166-218X(87)90073-4. |
[10] |
W. Murray and K.-M. Ng, An algorithm for nonlinear optimization problems with binary variables,, Comput. Optim. Appl., 47 (2010), 257.
doi: 10.1007/s10589-008-9218-1. |
[11] |
C.-K. Ng, L.-S. Zhang, D. Li and W.-W. Tian, Discrete filled function method for discrete global optimization,, Comput. Optim. Appl., 31 (2005), 87.
doi: 10.1007/s10589-005-0985-7. |
[12] |
P. M. Pardalos, O. A. Prokopyev and S. Busygin, Continuous approaches for solving discrete optimization problems,, in Handbook on Modelling for Discrete Optimization, (2006), 39.
doi: 10.1007/0-387-32942-0_2. |
[13] |
J. Richstein, Verifying the Goldbach conjecture up to $4\cdot 10^{14}$,, Math. Comp., 70 (2001), 1745.
doi: 10.1090/S0025-5718-00-01290-4. |
[14] |
K. Schittkowski, More Test Examples for Nonlinear Programming Codes,, Lecture Notes in Economics and Mathematical Systems, (1987).
doi: 10.1007/978-3-642-61582-5. |
[15] |
R. A. Shandiz and N. Mahdavi-amiri, An exact penalty approach for mixed integer nonlinear programming problems,, American Journal of Operations Research, 1 (2011), 185. Google Scholar |
[16] |
H. D. Sherali and W. P. Adams, A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems,, Discrete Appl. Math., 52 (1994), 83.
doi: 10.1016/0166-218X(92)00190-W. |
[17] |
S. Wang, K. L. Teo, H. W. J. Lee and L. Caccetta, Solving 0-1 programming problems by a penalty approach,, Opsearch, 34 (1997), 196.
|
[18] |
W.-Y. Yan and K. L. Teo, Optimal finite-precision approximation of FIR filters,, Signal Processing, 82 (2002), 1695.
doi: 10.1016/S0165-1684(02)00331-6. |
[19] |
K. F. C Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization,, J. Global Optim., 28 (2004), 229.
doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[20] |
K. F. C Yiu, W. Y. Yan, K. L. Teo and S. Y. Low, A new hybrid descent method with application to the optimal design of finite precision FIR filters,, Optim. Methods Softw., 25 (2010), 725.
doi: 10.1080/10556780903254104. |
[21] |
C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503.
doi: 10.1007/s10898-012-9858-7. |
[22] |
W. X. Zhu, Penalty parameter for linearly constrained 0-1 quadratic programming,, J. Optim. Theory Appl., 116 (2003), 229.
doi: 10.1023/A:1022174505886. |
[1] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[2] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[3] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[4] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[5] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[6] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[7] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[8] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[9] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[10] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[11] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[12] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[13] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[14] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[15] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[16] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[17] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[18] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[19] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[20] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]