
Previous Article
The inverse parallel machine scheduling problem with minimum total completion time
 JIMO Home
 This Issue

Next Article
Multimodal image registration by elastic matching of edge sketches via optimal control
A timedependent scheduling problem to minimize the sum of the total weighted tardiness among two agents
1.  Department of Business Administration, KangNing Junior College of Medical Care and Management, Taipei, Taiwan, Taiwan 
2.  College of Sciences, East China Institute of Technology, Fuzhou, Jiangxi 344000, China 
3.  Department of Healthcare Management, Yuanpei University, Hsinchu, Taiwan 
4.  Department of Statistics, Feng Chia University, Taichung, Taiwan 
References:
[1] 
A. Agnetis, P. B. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents, Operations Research, 52 (2004), 229242. doi: 10.1287/opre.1030.0092. 
[2] 
A. Agnetis, D. Pacciarelli and A. Pacifici, Multiagent single machine scheduling, Annals of Operations Research, 150 (2007), 315. doi: 10.1007/s104790060164y. 
[3] 
B. Alidaee and N. K. Womer, Scheduling with time dependent processing times: Review and extensions, Journal of the Operational Research Society, 50 (1999), 711729. 
[4] 
A. Allahverdi and F. S. AlAnzi, Using twomachine flowshop with maximum lateness objective to model multimedia data objects scheduling problem for WWW applications, Computers and Operations Research, 29 (2002), 971994. doi: 10.1016/S03050548(00)000976. 
[5] 
A. Bachman and A. Janiak, Scheduling Jobs with Special Type of Start Time Dependent Processing Times, Report No 34/97, Institute of Engineering Cybernetics, Wroclaw University of Technology, 1997. 
[6] 
K. R. Baker and J. C. Smith, A multiplecriterion model for machine scheduling, Journal of Scheduling, 6 (2003), 716. doi: 10.1023/A:1022231419049. 
[7] 
D. BenArieh and O. Maimon, Annealing method for PCB assembly scheduling on two sequential machines, International Journal of Computer Integrated Manufacturing, 5 (1992), 361367. doi: 10.1080/09511929208944543. 
[8] 
S. Browne and U. Yechiali, Scheduling deteriorating jobs on a single processor, Operations Research, 38 (1990), 495498. doi: 10.1287/opre.38.3.495. 
[9] 
S. R. Cheng, A singlemachine twoagent scheduling problem by GA approach, AsiaPacific Journal of Operational Research, 29 (2012), 1250013, 22 pp. doi: 10.1142/S0217595912500133. 
[10] 
T. C. E. Cheng, Q. Ding and B. M. T. Lin, A concise survey of scheduling with timedependent processing times, European Journal of Operational Research, 152 (2004), 113. doi: 10.1016/S03772217(02)009098. 
[11] 
T. C. E. Cheng, C. T. Ng and J. J. Yuan, Multiagent scheduling on a single machine to minimize total weighted number of tardy jobs, Theoretical Computer Science, 362 (2006), 273281. doi: 10.1016/j.tcs.2006.07.011. 
[12] 
T. C. E. Cheng, C. T. Ng and J. J. Yuan, Multiagent scheduling on a single machine with maxform criteria, European Journal of Operational Research, 188 (2008), 603609. doi: 10.1016/j.ejor.2007.04.040. 
[13] 
T. C. E. Cheng, S. R. Cheng, W. H. Wu, P. H. Hsu and C. C. Wu, A twoagent single machine scheduling problem with truncated sumofprocessingtimesbased learning considerations, Computers & Industrial Engineering, 60 (2011), 534541. doi: 10.1016/j.cie.2010.12.008. 
[14] 
T. C. E. Cheng, W. H. Wu, S. R. Cheng and C. C. Wu, Twoagent scheduling with position based deteriorating jobs and learning effects, Applied Mathematics and Computation, 217 (2011), 88048824. doi: 10.1016/j.amc.2011.04.005. 
[15] 
T. C. E. Cheng, Y. H. Chung, S. C. Liao and W. C Lee, Twoagent singemachine scheduling with release times to minimize the total weighted completion time, Computers & Operations Research, 40 (2013), 353361. doi: 10.1016/j.cor.2012.07.013. 
[16] 
C. Chu, A branchandbound algorithm to minimize total tardiness with different release dates, Naval Research Logistics, 39 (1992), 859875. 
[17] 
A. Colorni, M. Dorigo, M. Maniezzo, I. F. J. Varela and P. Bourgine, Distributed Optimization by Ant Colonies, Proceedings of the first European Conference on Artificial Life, Pairs, 1991. 
[18] 
A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian, Ant system for jobshop scheduling, Belgian Journal of Operations Research, 34 (1994), 3953. 
[19] 
M. Dorigo, Di Caro G and L. M. Gambardella, Ant algorithms for discrete optimization, Artificial Life, 5 (1999), 137172. doi: 10.1162/106454699568728. 
[20] 
M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning approach to travel salesman problem, IEEE Trans Evol Computing, 1 (1997), 5366. doi: 10.1109/4235.585892. 
[21] 
M. L. Fisher, A dual algorithm for the onemachine scheduling problem,, Math Programming, 11 (): 229. doi: 10.1007/BF01580393. 
[22] 
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and heuristic in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979), 287326. doi: 10.1016/S01675060(08)70356X. 
[23] 
A. Janiak, T. Krysiak and R. Trela, Scheduling problems with learning and aging effects: A survey, Decision Making in Manufacturing and Services, 5 (2011), 1936. 
[24] 
S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671680. doi: 10.1126/science.220.4598.671. 
[25] 
A. S. Kunnathur and S. K. Gupta, Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem, European Journal of Operation Research, 47 (1990), 5664. doi: 10.1016/03772217(90)90089T. 
[26] 
K. Lee, B. C. Choi, J. Y. T. Leung and M. L. Pinedo, Approximation algorithms for multiagent scheduling to minimize total weighted completion time, Information Processing Letters, 109 (2009), 913917. doi: 10.1016/j.ipl.2009.04.018. 
[27] 
J. Lenstra, A. H. G. Rinnooy Kan and P. Brucker, Complexity of Machine Scheduling Problems, Annals of Discrete Mathematics, 1 (1977), 343362. 
[28] 
M. Lai and X. Tong, A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search, Journal of Industrial and Management Optimization, 8 (2012), 469484. doi: 10.3934/jimo.2012.8.469. 
[29] 
P. Liu and L. Tang, Twoagent scheduling with linear deteriorating jobs on a single machine, Lecture Notes in Computer Science, 5092 (2008), 642650. 
[30] 
P. Liu, X. Y. Zhou and L. X. Tang, Twoagent singlemachine scheduling with positiondependent processing times, International Journal of Advanced Manufacturing Technology, 48 (2010), 325331. doi: 10.1007/s0017000922595. 
[31] 
D. C. Li and P. H. Hsu, Solving a twoagent singlemachine scheduling problem considering learning effect, Computers & Operations Research, 39 (2012), 16441651. doi: 10.1016/j.cor.2011.09.018. 
[32] 
W. Luo, L. Chen and G. Zhang, Approximation schemes for twomachine flow shop scheduling with two agents, Journal of Combinatorial Optimization, 24 (2012), 229239. doi: 10.1007/s1087801193782. 
[33] 
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs, Journal of Industrial and Management Optimization, 8 (2012), 271283. doi: 10.3934/jimo.2012.8.271. 
[34] 
E. Mokotoff, Algorithms for bicriteria minimization in the permutation flow shop scheduling problem, Journal of Industrial and Management Optimization, 7 (2011), 253282. doi: 10.3934/jimo.2011.7.253. 
[35] 
G. Mosheiov, $V$shaped policies for scheduling deteriorating jobs, Operations Research, 39 (1991), 979991. doi: 10.1287/opre.39.6.979. 
[36] 
G. Mosheiov, Scheduling jobs under simple linear deterioration, Computers & Operations Research, 21 (1994), 653659. doi: 10.1016/03050548(94)900809. 
[37] 
B. Mor and G. Mosheiov, Scheduling problems with two competing agents to minimize minmax and minsum earliness measures, European Journal of Operational Research, 206 (2010), 540546. doi: 10.1016/j.ejor.2010.03.003. 
[38] 
C. T. Ng, T. C. E. Cheng and J. J. Yuan, A note on the complexity of the problem of twoagent scheduling on a single machine, Journal of Combinatorial Optimization, 12 (2006), 387394. doi: 10.1007/s1087800690010. 
[39] 
Q. Q. Nong, T. C. E. Cheng and C. T. Ng, Twoagent scheduling to minimize the total cost, European Journal of Operational Research, 215 (2011), 3944. doi: 10.1016/j.ejor.2011.05.041. 
[40] 
J. B. Wang and T. C. E. Cheng, Scheduling problems with the effects of deterioration and learning, AsiaPacific Journal of Operational Research, 24 (2007), 245261. doi: 10.1142/S021759590700122X. 
[41] 
J. B. Wang and Q. Guo, A duedate assignment problem with learning effect and deteriorating jobs, Applied Mathematical Modelling, 34 (2010), 309313. doi: 10.1016/j.apm.2009.04.020. 
[42] 
J. B. Wang, L. H. Sun and L. Y. Sun, Singlemachine total completion time scheduling with a timedependent deterioration, Applied Mathematical Modelling, 35 (2011), 15061511. doi: 10.1016/j.apm.2010.09.028. 
[43] 
G. Wan, R. S. Vakati, J. Y. T. Leung and M. Pinedo, Scheduling two agents with controllable processing times, European Journal of Operational Research, 205 (2010), 528539. doi: 10.1016/j.ejor.2010.01.005. 
[44] 
W. H. Wu, S. R. Cheng, C. C. Wu and Y. Yin, Ant colony algorithms for a twoagent scheduling with sumof processing timesbased learning and deteriorating considerations, Journal of Intelligent Manufacturing, 23 (2012), 19851993. doi: 10.1007/s1084501105255. 
[45] 
C. C. Wu, S. K. Huang and W. C. Lee, Twoagent scheduling with learning consideration, Computers & Industrial Engineering, 61 (2011), 13241335. doi: 10.1016/j.cie.2011.08.007. 
[46] 
D. L. Yang and W. H. Kuo, Singlemachine scheduling with both deterioration and learning effects, Annals of Operations Research, 172 (2009), 315327. doi: 10.1007/s1047900906153. 
[47] 
D. L. Yang and W. H. Kuo, Scheduling with deteriorating jobs and learning effects, Applied Mathematics and Computation, 218 (2011), 20692073. doi: 10.1016/j.amc.2011.07.023. 
[48] 
S. H. Yang and J. B. Wang, Minimizing total weighted completion time in a twomachine flow shop scheduling under simple linear deterioration, Applied Mathematics and Computation, 217 (2011), 48194826. doi: 10.1016/j.amc.2010.11.037. 
[49] 
S. H. Yang and D. L. Yang, Minimizing the total completion time in singlemachine scheduling with aging/deteriorating effects and deteriorating maintenance activities, Computers and Mathematics with Applications, 60 (2010), 21612169. doi: 10.1016/j.camwa.2010.08.003. 
[50] 
Y. Yin and D. Xu, Some singlemachine scheduling problems with general effects of learning and deterioration, Computers and Mathematics with Applications, 61 (2011), 100108. doi: 10.1016/j.camwa.2010.10.036. 
[51] 
Y. Yin, S. R. Cheng and C. C. Wu, Scheduling problems with two agents and a linear nonincreasing deterioration to minimize earliness penalties, Information Sciences, 189 (2012), 282292. doi: 10.1016/j.ins.2011.11.035. 
[52] 
Y. Yin, S. R. Cheng, T. C. E. Cheng, W. H. Wu and C. C. Wu, Twoagent singlemachine scheduling with release times and deadlines, International Journal of Shipping and Transport Logistics, 5 (2013), 7594. doi: 10.1504/IJSTL.2013.050590. 
[53] 
Y. Yin, T. C. E. Cheng, J. Xu, S. R. Cheng and C. C. Wu, Singlemachine scheduling with pastsequencedependent delivery times and a linear deterioration, Journal of Industrial and Management Optimization, 9 (2013), 323339. doi: 10.3934/jimo.2013.9.323. 
[54] 
C. L. Zhao, Q. L. Zhang and H. Y. Tang, Scheduling problems under linear deterioration, Acta Automatica Sinica, 29 (2003), 531535. 
show all references
References:
[1] 
A. Agnetis, P. B. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents, Operations Research, 52 (2004), 229242. doi: 10.1287/opre.1030.0092. 
[2] 
A. Agnetis, D. Pacciarelli and A. Pacifici, Multiagent single machine scheduling, Annals of Operations Research, 150 (2007), 315. doi: 10.1007/s104790060164y. 
[3] 
B. Alidaee and N. K. Womer, Scheduling with time dependent processing times: Review and extensions, Journal of the Operational Research Society, 50 (1999), 711729. 
[4] 
A. Allahverdi and F. S. AlAnzi, Using twomachine flowshop with maximum lateness objective to model multimedia data objects scheduling problem for WWW applications, Computers and Operations Research, 29 (2002), 971994. doi: 10.1016/S03050548(00)000976. 
[5] 
A. Bachman and A. Janiak, Scheduling Jobs with Special Type of Start Time Dependent Processing Times, Report No 34/97, Institute of Engineering Cybernetics, Wroclaw University of Technology, 1997. 
[6] 
K. R. Baker and J. C. Smith, A multiplecriterion model for machine scheduling, Journal of Scheduling, 6 (2003), 716. doi: 10.1023/A:1022231419049. 
[7] 
D. BenArieh and O. Maimon, Annealing method for PCB assembly scheduling on two sequential machines, International Journal of Computer Integrated Manufacturing, 5 (1992), 361367. doi: 10.1080/09511929208944543. 
[8] 
S. Browne and U. Yechiali, Scheduling deteriorating jobs on a single processor, Operations Research, 38 (1990), 495498. doi: 10.1287/opre.38.3.495. 
[9] 
S. R. Cheng, A singlemachine twoagent scheduling problem by GA approach, AsiaPacific Journal of Operational Research, 29 (2012), 1250013, 22 pp. doi: 10.1142/S0217595912500133. 
[10] 
T. C. E. Cheng, Q. Ding and B. M. T. Lin, A concise survey of scheduling with timedependent processing times, European Journal of Operational Research, 152 (2004), 113. doi: 10.1016/S03772217(02)009098. 
[11] 
T. C. E. Cheng, C. T. Ng and J. J. Yuan, Multiagent scheduling on a single machine to minimize total weighted number of tardy jobs, Theoretical Computer Science, 362 (2006), 273281. doi: 10.1016/j.tcs.2006.07.011. 
[12] 
T. C. E. Cheng, C. T. Ng and J. J. Yuan, Multiagent scheduling on a single machine with maxform criteria, European Journal of Operational Research, 188 (2008), 603609. doi: 10.1016/j.ejor.2007.04.040. 
[13] 
T. C. E. Cheng, S. R. Cheng, W. H. Wu, P. H. Hsu and C. C. Wu, A twoagent single machine scheduling problem with truncated sumofprocessingtimesbased learning considerations, Computers & Industrial Engineering, 60 (2011), 534541. doi: 10.1016/j.cie.2010.12.008. 
[14] 
T. C. E. Cheng, W. H. Wu, S. R. Cheng and C. C. Wu, Twoagent scheduling with position based deteriorating jobs and learning effects, Applied Mathematics and Computation, 217 (2011), 88048824. doi: 10.1016/j.amc.2011.04.005. 
[15] 
T. C. E. Cheng, Y. H. Chung, S. C. Liao and W. C Lee, Twoagent singemachine scheduling with release times to minimize the total weighted completion time, Computers & Operations Research, 40 (2013), 353361. doi: 10.1016/j.cor.2012.07.013. 
[16] 
C. Chu, A branchandbound algorithm to minimize total tardiness with different release dates, Naval Research Logistics, 39 (1992), 859875. 
[17] 
A. Colorni, M. Dorigo, M. Maniezzo, I. F. J. Varela and P. Bourgine, Distributed Optimization by Ant Colonies, Proceedings of the first European Conference on Artificial Life, Pairs, 1991. 
[18] 
A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian, Ant system for jobshop scheduling, Belgian Journal of Operations Research, 34 (1994), 3953. 
[19] 
M. Dorigo, Di Caro G and L. M. Gambardella, Ant algorithms for discrete optimization, Artificial Life, 5 (1999), 137172. doi: 10.1162/106454699568728. 
[20] 
M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning approach to travel salesman problem, IEEE Trans Evol Computing, 1 (1997), 5366. doi: 10.1109/4235.585892. 
[21] 
M. L. Fisher, A dual algorithm for the onemachine scheduling problem,, Math Programming, 11 (): 229. doi: 10.1007/BF01580393. 
[22] 
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and heuristic in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979), 287326. doi: 10.1016/S01675060(08)70356X. 
[23] 
A. Janiak, T. Krysiak and R. Trela, Scheduling problems with learning and aging effects: A survey, Decision Making in Manufacturing and Services, 5 (2011), 1936. 
[24] 
S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671680. doi: 10.1126/science.220.4598.671. 
[25] 
A. S. Kunnathur and S. K. Gupta, Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem, European Journal of Operation Research, 47 (1990), 5664. doi: 10.1016/03772217(90)90089T. 
[26] 
K. Lee, B. C. Choi, J. Y. T. Leung and M. L. Pinedo, Approximation algorithms for multiagent scheduling to minimize total weighted completion time, Information Processing Letters, 109 (2009), 913917. doi: 10.1016/j.ipl.2009.04.018. 
[27] 
J. Lenstra, A. H. G. Rinnooy Kan and P. Brucker, Complexity of Machine Scheduling Problems, Annals of Discrete Mathematics, 1 (1977), 343362. 
[28] 
M. Lai and X. Tong, A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search, Journal of Industrial and Management Optimization, 8 (2012), 469484. doi: 10.3934/jimo.2012.8.469. 
[29] 
P. Liu and L. Tang, Twoagent scheduling with linear deteriorating jobs on a single machine, Lecture Notes in Computer Science, 5092 (2008), 642650. 
[30] 
P. Liu, X. Y. Zhou and L. X. Tang, Twoagent singlemachine scheduling with positiondependent processing times, International Journal of Advanced Manufacturing Technology, 48 (2010), 325331. doi: 10.1007/s0017000922595. 
[31] 
D. C. Li and P. H. Hsu, Solving a twoagent singlemachine scheduling problem considering learning effect, Computers & Operations Research, 39 (2012), 16441651. doi: 10.1016/j.cor.2011.09.018. 
[32] 
W. Luo, L. Chen and G. Zhang, Approximation schemes for twomachine flow shop scheduling with two agents, Journal of Combinatorial Optimization, 24 (2012), 229239. doi: 10.1007/s1087801193782. 
[33] 
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs, Journal of Industrial and Management Optimization, 8 (2012), 271283. doi: 10.3934/jimo.2012.8.271. 
[34] 
E. Mokotoff, Algorithms for bicriteria minimization in the permutation flow shop scheduling problem, Journal of Industrial and Management Optimization, 7 (2011), 253282. doi: 10.3934/jimo.2011.7.253. 
[35] 
G. Mosheiov, $V$shaped policies for scheduling deteriorating jobs, Operations Research, 39 (1991), 979991. doi: 10.1287/opre.39.6.979. 
[36] 
G. Mosheiov, Scheduling jobs under simple linear deterioration, Computers & Operations Research, 21 (1994), 653659. doi: 10.1016/03050548(94)900809. 
[37] 
B. Mor and G. Mosheiov, Scheduling problems with two competing agents to minimize minmax and minsum earliness measures, European Journal of Operational Research, 206 (2010), 540546. doi: 10.1016/j.ejor.2010.03.003. 
[38] 
C. T. Ng, T. C. E. Cheng and J. J. Yuan, A note on the complexity of the problem of twoagent scheduling on a single machine, Journal of Combinatorial Optimization, 12 (2006), 387394. doi: 10.1007/s1087800690010. 
[39] 
Q. Q. Nong, T. C. E. Cheng and C. T. Ng, Twoagent scheduling to minimize the total cost, European Journal of Operational Research, 215 (2011), 3944. doi: 10.1016/j.ejor.2011.05.041. 
[40] 
J. B. Wang and T. C. E. Cheng, Scheduling problems with the effects of deterioration and learning, AsiaPacific Journal of Operational Research, 24 (2007), 245261. doi: 10.1142/S021759590700122X. 
[41] 
J. B. Wang and Q. Guo, A duedate assignment problem with learning effect and deteriorating jobs, Applied Mathematical Modelling, 34 (2010), 309313. doi: 10.1016/j.apm.2009.04.020. 
[42] 
J. B. Wang, L. H. Sun and L. Y. Sun, Singlemachine total completion time scheduling with a timedependent deterioration, Applied Mathematical Modelling, 35 (2011), 15061511. doi: 10.1016/j.apm.2010.09.028. 
[43] 
G. Wan, R. S. Vakati, J. Y. T. Leung and M. Pinedo, Scheduling two agents with controllable processing times, European Journal of Operational Research, 205 (2010), 528539. doi: 10.1016/j.ejor.2010.01.005. 
[44] 
W. H. Wu, S. R. Cheng, C. C. Wu and Y. Yin, Ant colony algorithms for a twoagent scheduling with sumof processing timesbased learning and deteriorating considerations, Journal of Intelligent Manufacturing, 23 (2012), 19851993. doi: 10.1007/s1084501105255. 
[45] 
C. C. Wu, S. K. Huang and W. C. Lee, Twoagent scheduling with learning consideration, Computers & Industrial Engineering, 61 (2011), 13241335. doi: 10.1016/j.cie.2011.08.007. 
[46] 
D. L. Yang and W. H. Kuo, Singlemachine scheduling with both deterioration and learning effects, Annals of Operations Research, 172 (2009), 315327. doi: 10.1007/s1047900906153. 
[47] 
D. L. Yang and W. H. Kuo, Scheduling with deteriorating jobs and learning effects, Applied Mathematics and Computation, 218 (2011), 20692073. doi: 10.1016/j.amc.2011.07.023. 
[48] 
S. H. Yang and J. B. Wang, Minimizing total weighted completion time in a twomachine flow shop scheduling under simple linear deterioration, Applied Mathematics and Computation, 217 (2011), 48194826. doi: 10.1016/j.amc.2010.11.037. 
[49] 
S. H. Yang and D. L. Yang, Minimizing the total completion time in singlemachine scheduling with aging/deteriorating effects and deteriorating maintenance activities, Computers and Mathematics with Applications, 60 (2010), 21612169. doi: 10.1016/j.camwa.2010.08.003. 
[50] 
Y. Yin and D. Xu, Some singlemachine scheduling problems with general effects of learning and deterioration, Computers and Mathematics with Applications, 61 (2011), 100108. doi: 10.1016/j.camwa.2010.10.036. 
[51] 
Y. Yin, S. R. Cheng and C. C. Wu, Scheduling problems with two agents and a linear nonincreasing deterioration to minimize earliness penalties, Information Sciences, 189 (2012), 282292. doi: 10.1016/j.ins.2011.11.035. 
[52] 
Y. Yin, S. R. Cheng, T. C. E. Cheng, W. H. Wu and C. C. Wu, Twoagent singlemachine scheduling with release times and deadlines, International Journal of Shipping and Transport Logistics, 5 (2013), 7594. doi: 10.1504/IJSTL.2013.050590. 
[53] 
Y. Yin, T. C. E. Cheng, J. Xu, S. R. Cheng and C. C. Wu, Singlemachine scheduling with pastsequencedependent delivery times and a linear deterioration, Journal of Industrial and Management Optimization, 9 (2013), 323339. doi: 10.3934/jimo.2013.9.323. 
[54] 
C. L. Zhao, Q. L. Zhang and H. Y. Tang, Scheduling problems under linear deterioration, Acta Automatica Sinica, 29 (2003), 531535. 
[1] 
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 979987. doi: 10.3934/dcdss.2019066 
[2] 
JeanPaul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated locationallocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 12151225. doi: 10.3934/jimo.2016.12.1215 
[3] 
Longzhen Zhai, Shaohong Feng. A pedestrian evacuation model based on ant colony algorithm considering dynamic panic spread. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022065 
[4] 
Hongwei Li, Yuvraj Gajpal, C. R. Bector. A survey of duedate related singlemachine with twoagent scheduling problem. Journal of Industrial and Management Optimization, 2020, 16 (3) : 13291347. doi: 10.3934/jimo.2019005 
[5] 
Yunqing Zou, Zhengkui Lin, Dongya Han, T. C. Edwin Cheng, ChinChia Wu. Twoagent integrated scheduling of production and distribution operations with fixed departure times. Journal of Industrial and Management Optimization, 2022, 18 (2) : 9851007. doi: 10.3934/jimo.2021005 
[6] 
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bilevel seru loading problem with worker assignment in seru production systems. Journal of Industrial and Management Optimization, 2021, 17 (2) : 779803. doi: 10.3934/jimo.2019134 
[7] 
T. W. Leung, Chi Kin Chan, Marvin D. Troutt. A mixed simulated annealinggenetic algorithm approach to the multibuyer multiitem joint replenishment problem: advantages of metaheuristics. Journal of Industrial and Management Optimization, 2008, 4 (1) : 5366. doi: 10.3934/jimo.2008.4.53 
[8] 
Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and realtime assignment of preventive maintenance jobs on parallel processors. Journal of Industrial and Management Optimization, 2014, 10 (1) : 243258. doi: 10.3934/jimo.2014.10.243 
[9] 
Yukang He, Zhengwen He, Nengmin Wang. Tabu search and simulated annealing for resourceconstrained multiproject scheduling to minimize maximal cash flow gap. Journal of Industrial and Management Optimization, 2021, 17 (5) : 24512474. doi: 10.3934/jimo.2020077 
[10] 
Mostafa Abouei Ardakan, A. Kourank Beheshti, S. Hamid Mirmohammadi, Hamed Davari Ardakani. A hybrid metaheuristic algorithm to minimize the number of tardy jobs in a dynamic twomachine flow shop problem. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 465480. doi: 10.3934/naco.2017029 
[11] 
JiBo Wang, Mengqi Liu, Na Yin, Ping Ji. Scheduling jobs with controllable processing time, truncated jobdependent learning and deterioration effects. Journal of Industrial and Management Optimization, 2017, 13 (2) : 10251039. doi: 10.3934/jimo.2016060 
[12] 
Guangzhou Chen, Guijian Liu, Jiaquan Wang, Ruzhong Li. Identification of water quality model parameters using artificial bee colony algorithm. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 157165. doi: 10.3934/naco.2012.2.157 
[13] 
Ling Lin, Dong He, Zhiyi Tan. Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm. Journal of Industrial and Management Optimization, 2008, 4 (4) : 817826. doi: 10.3934/jimo.2008.4.817 
[14] 
Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185198. doi: 10.3934/jimo.2015.11.185 
[15] 
Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial and Management Optimization, 2014, 10 (3) : 777794. doi: 10.3934/jimo.2014.10.777 
[16] 
Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A prioritybased genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 13911415. doi: 10.3934/jimo.2016.12.1391 
[17] 
Jingwen Zhang, Wanjun Liu, Wanlin Liu. An efficient genetic algorithm for decentralized multiproject scheduling with resource transfers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 124. doi: 10.3934/jimo.2020140 
[18] 
Cuixia Miao, Yuzhong Zhang. Scheduling with stepdeteriorating jobs to minimize the makespan. Journal of Industrial and Management Optimization, 2019, 15 (4) : 19551964. doi: 10.3934/jimo.2018131 
[19] 
Wenchang Luo, Lin Chen. Approximation schemes for scheduling a maintenance and linear deteriorating jobs. Journal of Industrial and Management Optimization, 2012, 8 (2) : 271283. doi: 10.3934/jimo.2012.8.271 
[20] 
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 321332. doi: 10.3934/naco.2020028 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]