• Previous Article
    A DC programming approach for sensor network localization with uncertainties in anchor positions
  • JIMO Home
  • This Issue
  • Next Article
    Solving structural engineering design optimization problems using an artificial bee colony algorithm
July  2014, 10(3): 795-815. doi: 10.3934/jimo.2014.10.795

Optimal stochastic investment games under Markov regime switching market

1. 

School of Mathematics and Computer Science, Anhui Normal University, Wuhu, Anhui, 241003, China

2. 

School of Finance and Statistics, East China Normal University, Shanghai, 200241

3. 

School of Finance, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210046, China

Received  November 2012 Revised  June 2013 Published  November 2013

This paper focuses on stochastic investment games between two investors with incorporating the influence of the macro economical environment that modeled by a Markov chain with $d$ states. There are two correlated assets are available to two investors, each investor can only invest into one of assets and his opponent choose to invest the other one. The dynamic of the two assets are driven by two drifted Brownian motion with coefficients specified by the functions of the Markov chain. Thus the system considered in this paper is controlled SDEs with random coefficients. Only one payoff function is available to both investors, one investor wants to maximize the expected payoff function, while his opponent wants to minimize the quantity at the same time. As results, the existence of the saddle point of the game, a couple of equations satisfied by the value functions and optimal policies for both investors are derived. Based on finite-difference method and weak convergence theory, a vector-valued Markov chain is constructed for approximating the underlying risky process weakly, which enables us to obtain the value function and optimal policies numerically. To some extend, we can view this paper as a further research of the problems proposed in Wan [23].
Citation: Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795
References:
[1]

S. Browne, Optimal investment policy for a firm with random risk process: Exponential utility and minimizing the probabilty of ruin,, Mathematical Operation Research, 20 (1995), 937.   Google Scholar

[2]

S. Browne, Stochastic differential portfolio games/em>,, Journal of Applied Probability, 37 (2000), 126.  doi: 10.1239/jap/1014842273.  Google Scholar

[3]

M. Clements and H. Krolzig, Can regime-swichting models reproducing the business cycle features of U.S. aggregate consumption, investment and output?, International Journal of Financing and Economics, 9 (2004), 1.   Google Scholar

[4]

R. Elliott, The existence of value in stochastic differential games,, SIAM: Journal of Control and Optimizaiton, 14 (1976), 85.  doi: 10.1137/0314006.  Google Scholar

[5]

R. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems,, Finance and Stochastics, 1 (1997), 229.  doi: 10.1007/s007800050022.  Google Scholar

[6]

R. Elliott and P. Kopp, Mathematics of Financial Markets,, $2^{nd}$ edition, (2005).   Google Scholar

[7]

R. Elliott, T. K. Siu and L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching,, Applied Mathematical Finance, 14 (2007), 41.  doi: 10.1080/13504860600659222.  Google Scholar

[8]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games,, Indiana Universtiy Mathematical Journal, 38 (1989), 293.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[9]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Second edition. Stochastic Modelling and Applied Probability, (2006).   Google Scholar

[10]

X. Guo, Information and option pricings,, Quantitative Finance, 1 (2001), 38.  doi: 10.1080/713665550.  Google Scholar

[11]

J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[12]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[13]

H. Kushner and S. Chamberlain, On stochastic differential games: Sufficient conditions that a given strategy be a saddle point, and numerical procedures for the solution of the game,, Journal of Mathmatical Analysis and Applications, 26 (1969), 560.  doi: 10.1016/0022-247X(69)90199-1.  Google Scholar

[14]

H. J. Kusher, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations,, Academic Press, (1977).   Google Scholar

[15]

H. J. Kusher, Approximations and Weak Convergence Methods for Random Processes,, MIT Press, (1984).   Google Scholar

[16]

H. J. Kusher, Numerical methods for stochastic control problems in continuous time,, SIAM: Journal of Control and Optimization, 28 (1990), 990.  doi: 10.1137/0328056.  Google Scholar

[17]

H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time,, Springer-Verlag: New York, (2001).   Google Scholar

[18]

H. J. Kushner and S. G. Chamberlain, Finite state stochastic games: existence theorems and computational procedures,, IEEE Trans. Automat. Control, 14 (1969), 248.   Google Scholar

[19]

H. Meng, F. Yuen, T. Siu and H. Yang, Optimal portfolio in a continuous-time self-exciting threshold model,, Journal of Industrial and Management Optimization, 9 (2013), 487.  doi: 10.3934/jimo.2013.9.487.  Google Scholar

[20]

S. Pliska, Introduction to Mathematical Finance,, United States: Blackwell Publishing, (1997).   Google Scholar

[21]

P. E. Protter, Stochastic Integration and Differential Equations,, 2nd edition, (2005).   Google Scholar

[22]

Q. Song, G. Yin and Z. Zhang, Numercial solutions for stochastic differential games with regime switching,, IEEE Transactions on Automatica Control, 53 (2008), 509.  doi: 10.1109/TAC.2007.915169.  Google Scholar

[23]

S. Wan, Stochastic differential portfolio games based on utility with regime switching model,, in, (2007), 2302.   Google Scholar

[24]

H. Yang and L.Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 37 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[25]

D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[26]

K. C. Yiu, J. Liu, T. Siu and K., Ching, Optimal portfolios with regime switching and value-at-risk constraint,, Automatica, 46 (2010), 979.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[27]

Y. Zeng and Z. Li, Optimal reinsurance-investment strategies for insurers under mean-CaR criteria,, Journal of Industrial and Management Optimization, 8 (2012), 673.  doi: 10.3934/jimo.2012.8.673.  Google Scholar

show all references

References:
[1]

S. Browne, Optimal investment policy for a firm with random risk process: Exponential utility and minimizing the probabilty of ruin,, Mathematical Operation Research, 20 (1995), 937.   Google Scholar

[2]

S. Browne, Stochastic differential portfolio games/em>,, Journal of Applied Probability, 37 (2000), 126.  doi: 10.1239/jap/1014842273.  Google Scholar

[3]

M. Clements and H. Krolzig, Can regime-swichting models reproducing the business cycle features of U.S. aggregate consumption, investment and output?, International Journal of Financing and Economics, 9 (2004), 1.   Google Scholar

[4]

R. Elliott, The existence of value in stochastic differential games,, SIAM: Journal of Control and Optimizaiton, 14 (1976), 85.  doi: 10.1137/0314006.  Google Scholar

[5]

R. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems,, Finance and Stochastics, 1 (1997), 229.  doi: 10.1007/s007800050022.  Google Scholar

[6]

R. Elliott and P. Kopp, Mathematics of Financial Markets,, $2^{nd}$ edition, (2005).   Google Scholar

[7]

R. Elliott, T. K. Siu and L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching,, Applied Mathematical Finance, 14 (2007), 41.  doi: 10.1080/13504860600659222.  Google Scholar

[8]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games,, Indiana Universtiy Mathematical Journal, 38 (1989), 293.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[9]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Second edition. Stochastic Modelling and Applied Probability, (2006).   Google Scholar

[10]

X. Guo, Information and option pricings,, Quantitative Finance, 1 (2001), 38.  doi: 10.1080/713665550.  Google Scholar

[11]

J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[12]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[13]

H. Kushner and S. Chamberlain, On stochastic differential games: Sufficient conditions that a given strategy be a saddle point, and numerical procedures for the solution of the game,, Journal of Mathmatical Analysis and Applications, 26 (1969), 560.  doi: 10.1016/0022-247X(69)90199-1.  Google Scholar

[14]

H. J. Kusher, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations,, Academic Press, (1977).   Google Scholar

[15]

H. J. Kusher, Approximations and Weak Convergence Methods for Random Processes,, MIT Press, (1984).   Google Scholar

[16]

H. J. Kusher, Numerical methods for stochastic control problems in continuous time,, SIAM: Journal of Control and Optimization, 28 (1990), 990.  doi: 10.1137/0328056.  Google Scholar

[17]

H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time,, Springer-Verlag: New York, (2001).   Google Scholar

[18]

H. J. Kushner and S. G. Chamberlain, Finite state stochastic games: existence theorems and computational procedures,, IEEE Trans. Automat. Control, 14 (1969), 248.   Google Scholar

[19]

H. Meng, F. Yuen, T. Siu and H. Yang, Optimal portfolio in a continuous-time self-exciting threshold model,, Journal of Industrial and Management Optimization, 9 (2013), 487.  doi: 10.3934/jimo.2013.9.487.  Google Scholar

[20]

S. Pliska, Introduction to Mathematical Finance,, United States: Blackwell Publishing, (1997).   Google Scholar

[21]

P. E. Protter, Stochastic Integration and Differential Equations,, 2nd edition, (2005).   Google Scholar

[22]

Q. Song, G. Yin and Z. Zhang, Numercial solutions for stochastic differential games with regime switching,, IEEE Transactions on Automatica Control, 53 (2008), 509.  doi: 10.1109/TAC.2007.915169.  Google Scholar

[23]

S. Wan, Stochastic differential portfolio games based on utility with regime switching model,, in, (2007), 2302.   Google Scholar

[24]

H. Yang and L.Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 37 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[25]

D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[26]

K. C. Yiu, J. Liu, T. Siu and K., Ching, Optimal portfolios with regime switching and value-at-risk constraint,, Automatica, 46 (2010), 979.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[27]

Y. Zeng and Z. Li, Optimal reinsurance-investment strategies for insurers under mean-CaR criteria,, Journal of Industrial and Management Optimization, 8 (2012), 673.  doi: 10.3934/jimo.2012.8.673.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[3]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[6]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[7]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[8]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[11]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[12]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[13]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[14]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[15]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[16]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[17]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[18]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[19]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]