-
Previous Article
A hybrid approach for index tracking with practical constraints
- JIMO Home
- This Issue
-
Next Article
Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems
A nonlinear conjugate gradient method for a special class of matrix optimization problems
1. | Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt |
References:
[1] |
A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions,, Automatica, 42 (2006), 1935.
doi: 10.1016/j.automatica.2006.06.005. |
[2] |
M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs,, IEEE Proc. Control Theory Appl., 146 (1999), 349. Google Scholar |
[3] |
Z. Artstein, Linear systems with delayed controls: A reduction,, IEEE Transactions on Automatic Control, 27 (1982), 869.
doi: 10.1109/TAC.1982.1103023. |
[4] |
Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback,, IEEE Transaction on Systems, 31 (2001), 836. Google Scholar |
[5] |
Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems,, Nonlinear Analysis, 74 (2011), 927.
doi: 10.1016/j.na.2010.09.046. |
[6] |
Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence,, IEEE Transaction on Automatic Control, 40 (1995), 704.
doi: 10.1109/9.376105. |
[7] |
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.
|
[8] |
M. Ikeda, Decentralized control of large scale systems,, in Three Decades of Mathematical System Theory, (1989), 219.
doi: 10.1007/BFb0008464. |
[9] |
M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems,, Optimal Control Applications & Methods, 6 (1985), 167.
doi: 10.1002/oca.4660060209. |
[10] |
D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control,, Systems & Control Letters, 27 (1996), 223.
doi: 10.1016/0167-6911(96)80519-6. |
[11] |
K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems,, IEEE Transactions on Automatic Control, 51 (2006), 675.
doi: 10.1109/TAC.2006.872766. |
[12] |
F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems,, Technical Report, (2004). Google Scholar |
[13] |
T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise,, Automatica J. IFAC, 48 (2012), 2560.
doi: 10.1016/j.automatica.2012.06.054. |
[14] |
W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems,, Journal of Optimization Theory and Applications, 93 (1997), 597.
doi: 10.1023/A:1022647230641. |
[15] |
P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey,, IEEE Transactions on Automatic Control, 32 (1987), 658.
doi: 10.1109/TAC.1987.1104686. |
[16] |
E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem,, Journal of Applied Mathematics & Computing, 18 (2005), 1.
doi: 10.1007/BF02936553. |
[17] |
E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers,, Journal of the Operations Research Society of Japan, 51 (2008), 15.
|
[18] |
E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems,, Numerical Functional Analysis and Optimization, 33 (2012), 591.
doi: 10.1080/01630563.2012.661381. |
[19] |
E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design,, Journal of Computational Mathematics, 30 (2012), 279.
doi: 10.4208/jcm.1109-m3364. |
[20] |
E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design,, Journal of Applied Mathematics and Computing, 40 (2012), 529.
doi: 10.1007/s12190-012-0574-8. |
[21] |
W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595.
doi: 10.3934/jimo.2013.9.595. |
[22] |
P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems,, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167.
doi: 10.1115/1.1870047. |
[23] |
T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers,, SIAM Journal on Optimization, 7 (1997), 837.
doi: 10.1137/S1052623495290441. |
[24] |
M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems,, Automatica J. IFAC, 28 (1992), 215.
doi: 10.1016/0005-1098(92)90024-A. |
[25] |
D. D. Šiljak, Decentralized Control of Complex Systems,, Mathematics in Science and Engineering, (1991).
|
[26] |
D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,, Math. Problems Eng., 6 (2000), 461.
doi: 10.1155/S1024123X00001435. |
[27] |
V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey,, Automatica J. IFAC, 33 (1997), 125.
doi: 10.1016/S0005-1098(96)00141-0. |
[28] |
S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique,, International Journal of Robust and Nonlinear Control, 23 (2013), 381.
doi: 10.1002/rnc.1834. |
[29] |
R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems,, IEEE Transaction on Automatic Control, 37 (1992), 290.
doi: 10.1109/9.119629. |
[30] |
Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,, Applied Mathematics and Computation, 179 (2006), 407.
doi: 10.1016/j.amc.2005.11.150. |
[31] |
G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search,, Applied Mathematics and Computation, 215 (2009), 3082.
doi: 10.1016/j.amc.2009.09.063. |
[32] |
G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method,, Automatica J. IFAC, 37 (2001), 565.
doi: 10.1016/S0005-1098(00)00190-4. |
[33] |
L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence,, Optimization Methods and Software, 22 (2007), 697.
doi: 10.1080/10556780701223293. |
show all references
References:
[1] |
A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions,, Automatica, 42 (2006), 1935.
doi: 10.1016/j.automatica.2006.06.005. |
[2] |
M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs,, IEEE Proc. Control Theory Appl., 146 (1999), 349. Google Scholar |
[3] |
Z. Artstein, Linear systems with delayed controls: A reduction,, IEEE Transactions on Automatic Control, 27 (1982), 869.
doi: 10.1109/TAC.1982.1103023. |
[4] |
Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback,, IEEE Transaction on Systems, 31 (2001), 836. Google Scholar |
[5] |
Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems,, Nonlinear Analysis, 74 (2011), 927.
doi: 10.1016/j.na.2010.09.046. |
[6] |
Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence,, IEEE Transaction on Automatic Control, 40 (1995), 704.
doi: 10.1109/9.376105. |
[7] |
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.
|
[8] |
M. Ikeda, Decentralized control of large scale systems,, in Three Decades of Mathematical System Theory, (1989), 219.
doi: 10.1007/BFb0008464. |
[9] |
M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems,, Optimal Control Applications & Methods, 6 (1985), 167.
doi: 10.1002/oca.4660060209. |
[10] |
D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control,, Systems & Control Letters, 27 (1996), 223.
doi: 10.1016/0167-6911(96)80519-6. |
[11] |
K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems,, IEEE Transactions on Automatic Control, 51 (2006), 675.
doi: 10.1109/TAC.2006.872766. |
[12] |
F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems,, Technical Report, (2004). Google Scholar |
[13] |
T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise,, Automatica J. IFAC, 48 (2012), 2560.
doi: 10.1016/j.automatica.2012.06.054. |
[14] |
W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems,, Journal of Optimization Theory and Applications, 93 (1997), 597.
doi: 10.1023/A:1022647230641. |
[15] |
P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey,, IEEE Transactions on Automatic Control, 32 (1987), 658.
doi: 10.1109/TAC.1987.1104686. |
[16] |
E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem,, Journal of Applied Mathematics & Computing, 18 (2005), 1.
doi: 10.1007/BF02936553. |
[17] |
E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers,, Journal of the Operations Research Society of Japan, 51 (2008), 15.
|
[18] |
E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems,, Numerical Functional Analysis and Optimization, 33 (2012), 591.
doi: 10.1080/01630563.2012.661381. |
[19] |
E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design,, Journal of Computational Mathematics, 30 (2012), 279.
doi: 10.4208/jcm.1109-m3364. |
[20] |
E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design,, Journal of Applied Mathematics and Computing, 40 (2012), 529.
doi: 10.1007/s12190-012-0574-8. |
[21] |
W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595.
doi: 10.3934/jimo.2013.9.595. |
[22] |
P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems,, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167.
doi: 10.1115/1.1870047. |
[23] |
T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers,, SIAM Journal on Optimization, 7 (1997), 837.
doi: 10.1137/S1052623495290441. |
[24] |
M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems,, Automatica J. IFAC, 28 (1992), 215.
doi: 10.1016/0005-1098(92)90024-A. |
[25] |
D. D. Šiljak, Decentralized Control of Complex Systems,, Mathematics in Science and Engineering, (1991).
|
[26] |
D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,, Math. Problems Eng., 6 (2000), 461.
doi: 10.1155/S1024123X00001435. |
[27] |
V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey,, Automatica J. IFAC, 33 (1997), 125.
doi: 10.1016/S0005-1098(96)00141-0. |
[28] |
S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique,, International Journal of Robust and Nonlinear Control, 23 (2013), 381.
doi: 10.1002/rnc.1834. |
[29] |
R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems,, IEEE Transaction on Automatic Control, 37 (1992), 290.
doi: 10.1109/9.119629. |
[30] |
Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,, Applied Mathematics and Computation, 179 (2006), 407.
doi: 10.1016/j.amc.2005.11.150. |
[31] |
G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search,, Applied Mathematics and Computation, 215 (2009), 3082.
doi: 10.1016/j.amc.2009.09.063. |
[32] |
G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method,, Automatica J. IFAC, 37 (2001), 565.
doi: 10.1016/S0005-1098(00)00190-4. |
[33] |
L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence,, Optimization Methods and Software, 22 (2007), 697.
doi: 10.1080/10556780701223293. |
[1] |
Wataru Nakamura, Yasushi Narushima, Hiroshi Yabe. Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (3) : 595-619. doi: 10.3934/jimo.2013.9.595 |
[2] |
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303 |
[3] |
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063 |
[4] |
Shishun Li, Zhengda Huang. Guaranteed descent conjugate gradient methods with modified secant condition. Journal of Industrial & Management Optimization, 2008, 4 (4) : 739-755. doi: 10.3934/jimo.2008.4.739 |
[5] |
Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004 |
[6] |
Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019 |
[7] |
Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275 |
[8] |
V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223 |
[9] |
H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119 |
[10] |
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 |
[11] |
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157 |
[12] |
Gaohang Yu, Lutai Guan, Guoyin Li. Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property. Journal of Industrial & Management Optimization, 2008, 4 (3) : 565-579. doi: 10.3934/jimo.2008.4.565 |
[13] |
Yigui Ou, Haichan Lin. A class of accelerated conjugate-gradient-like methods based on a modified secant equation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019013 |
[14] |
Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014 |
[15] |
Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial & Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67 |
[16] |
N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235 |
[17] |
Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579 |
[18] |
Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027 |
[19] |
Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629 |
[20] |
Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]