• Previous Article
    A hybrid approach for index tracking with practical constraints
  • JIMO Home
  • This Issue
  • Next Article
    Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems
July  2014, 10(3): 883-903. doi: 10.3934/jimo.2014.10.883

A nonlinear conjugate gradient method for a special class of matrix optimization problems

1. 

Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt

Received  August 2012 Revised  July 2013 Published  November 2013

In this article, a nonlinear conjugate gradient method is studied and analyzed for finding the local solutions of two matrix optimization problems resulting from the decentralized static output feedback problem for continuous and discrete-time systems. The global convergence of the proposed method is established. Several numerical examples of decentralized static output feedback are presented that demonstrate the applicability of the considered approach.
Citation: El-Sayed M.E. Mostafa. A nonlinear conjugate gradient method for a special class of matrix optimization problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 883-903. doi: 10.3934/jimo.2014.10.883
References:
[1]

A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions,, Automatica, 42 (2006), 1935.  doi: 10.1016/j.automatica.2006.06.005.  Google Scholar

[2]

M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs,, IEEE Proc. Control Theory Appl., 146 (1999), 349.   Google Scholar

[3]

Z. Artstein, Linear systems with delayed controls: A reduction,, IEEE Transactions on Automatic Control, 27 (1982), 869.  doi: 10.1109/TAC.1982.1103023.  Google Scholar

[4]

Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback,, IEEE Transaction on Systems, 31 (2001), 836.   Google Scholar

[5]

Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems,, Nonlinear Analysis, 74 (2011), 927.  doi: 10.1016/j.na.2010.09.046.  Google Scholar

[6]

Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence,, IEEE Transaction on Automatic Control, 40 (1995), 704.  doi: 10.1109/9.376105.  Google Scholar

[7]

W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.   Google Scholar

[8]

M. Ikeda, Decentralized control of large scale systems,, in Three Decades of Mathematical System Theory, (1989), 219.  doi: 10.1007/BFb0008464.  Google Scholar

[9]

M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems,, Optimal Control Applications & Methods, 6 (1985), 167.  doi: 10.1002/oca.4660060209.  Google Scholar

[10]

D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control,, Systems & Control Letters, 27 (1996), 223.  doi: 10.1016/0167-6911(96)80519-6.  Google Scholar

[11]

K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems,, IEEE Transactions on Automatic Control, 51 (2006), 675.  doi: 10.1109/TAC.2006.872766.  Google Scholar

[12]

F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems,, Technical Report, (2004).   Google Scholar

[13]

T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise,, Automatica J. IFAC, 48 (2012), 2560.  doi: 10.1016/j.automatica.2012.06.054.  Google Scholar

[14]

W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems,, Journal of Optimization Theory and Applications, 93 (1997), 597.  doi: 10.1023/A:1022647230641.  Google Scholar

[15]

P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey,, IEEE Transactions on Automatic Control, 32 (1987), 658.  doi: 10.1109/TAC.1987.1104686.  Google Scholar

[16]

E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem,, Journal of Applied Mathematics & Computing, 18 (2005), 1.  doi: 10.1007/BF02936553.  Google Scholar

[17]

E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers,, Journal of the Operations Research Society of Japan, 51 (2008), 15.   Google Scholar

[18]

E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems,, Numerical Functional Analysis and Optimization, 33 (2012), 591.  doi: 10.1080/01630563.2012.661381.  Google Scholar

[19]

E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design,, Journal of Computational Mathematics, 30 (2012), 279.  doi: 10.4208/jcm.1109-m3364.  Google Scholar

[20]

E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design,, Journal of Applied Mathematics and Computing, 40 (2012), 529.  doi: 10.1007/s12190-012-0574-8.  Google Scholar

[21]

W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595.  doi: 10.3934/jimo.2013.9.595.  Google Scholar

[22]

P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems,, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167.  doi: 10.1115/1.1870047.  Google Scholar

[23]

T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers,, SIAM Journal on Optimization, 7 (1997), 837.  doi: 10.1137/S1052623495290441.  Google Scholar

[24]

M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems,, Automatica J. IFAC, 28 (1992), 215.  doi: 10.1016/0005-1098(92)90024-A.  Google Scholar

[25]

D. D. Šiljak, Decentralized Control of Complex Systems,, Mathematics in Science and Engineering, (1991).   Google Scholar

[26]

D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,, Math. Problems Eng., 6 (2000), 461.  doi: 10.1155/S1024123X00001435.  Google Scholar

[27]

V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey,, Automatica J. IFAC, 33 (1997), 125.  doi: 10.1016/S0005-1098(96)00141-0.  Google Scholar

[28]

S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique,, International Journal of Robust and Nonlinear Control, 23 (2013), 381.  doi: 10.1002/rnc.1834.  Google Scholar

[29]

R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems,, IEEE Transaction on Automatic Control, 37 (1992), 290.  doi: 10.1109/9.119629.  Google Scholar

[30]

Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,, Applied Mathematics and Computation, 179 (2006), 407.  doi: 10.1016/j.amc.2005.11.150.  Google Scholar

[31]

G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search,, Applied Mathematics and Computation, 215 (2009), 3082.  doi: 10.1016/j.amc.2009.09.063.  Google Scholar

[32]

G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method,, Automatica J. IFAC, 37 (2001), 565.  doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[33]

L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence,, Optimization Methods and Software, 22 (2007), 697.  doi: 10.1080/10556780701223293.  Google Scholar

show all references

References:
[1]

A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions,, Automatica, 42 (2006), 1935.  doi: 10.1016/j.automatica.2006.06.005.  Google Scholar

[2]

M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs,, IEEE Proc. Control Theory Appl., 146 (1999), 349.   Google Scholar

[3]

Z. Artstein, Linear systems with delayed controls: A reduction,, IEEE Transactions on Automatic Control, 27 (1982), 869.  doi: 10.1109/TAC.1982.1103023.  Google Scholar

[4]

Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback,, IEEE Transaction on Systems, 31 (2001), 836.   Google Scholar

[5]

Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems,, Nonlinear Analysis, 74 (2011), 927.  doi: 10.1016/j.na.2010.09.046.  Google Scholar

[6]

Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence,, IEEE Transaction on Automatic Control, 40 (1995), 704.  doi: 10.1109/9.376105.  Google Scholar

[7]

W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.   Google Scholar

[8]

M. Ikeda, Decentralized control of large scale systems,, in Three Decades of Mathematical System Theory, (1989), 219.  doi: 10.1007/BFb0008464.  Google Scholar

[9]

M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems,, Optimal Control Applications & Methods, 6 (1985), 167.  doi: 10.1002/oca.4660060209.  Google Scholar

[10]

D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control,, Systems & Control Letters, 27 (1996), 223.  doi: 10.1016/0167-6911(96)80519-6.  Google Scholar

[11]

K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems,, IEEE Transactions on Automatic Control, 51 (2006), 675.  doi: 10.1109/TAC.2006.872766.  Google Scholar

[12]

F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems,, Technical Report, (2004).   Google Scholar

[13]

T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise,, Automatica J. IFAC, 48 (2012), 2560.  doi: 10.1016/j.automatica.2012.06.054.  Google Scholar

[14]

W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems,, Journal of Optimization Theory and Applications, 93 (1997), 597.  doi: 10.1023/A:1022647230641.  Google Scholar

[15]

P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey,, IEEE Transactions on Automatic Control, 32 (1987), 658.  doi: 10.1109/TAC.1987.1104686.  Google Scholar

[16]

E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem,, Journal of Applied Mathematics & Computing, 18 (2005), 1.  doi: 10.1007/BF02936553.  Google Scholar

[17]

E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers,, Journal of the Operations Research Society of Japan, 51 (2008), 15.   Google Scholar

[18]

E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems,, Numerical Functional Analysis and Optimization, 33 (2012), 591.  doi: 10.1080/01630563.2012.661381.  Google Scholar

[19]

E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design,, Journal of Computational Mathematics, 30 (2012), 279.  doi: 10.4208/jcm.1109-m3364.  Google Scholar

[20]

E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design,, Journal of Applied Mathematics and Computing, 40 (2012), 529.  doi: 10.1007/s12190-012-0574-8.  Google Scholar

[21]

W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595.  doi: 10.3934/jimo.2013.9.595.  Google Scholar

[22]

P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems,, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167.  doi: 10.1115/1.1870047.  Google Scholar

[23]

T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers,, SIAM Journal on Optimization, 7 (1997), 837.  doi: 10.1137/S1052623495290441.  Google Scholar

[24]

M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems,, Automatica J. IFAC, 28 (1992), 215.  doi: 10.1016/0005-1098(92)90024-A.  Google Scholar

[25]

D. D. Šiljak, Decentralized Control of Complex Systems,, Mathematics in Science and Engineering, (1991).   Google Scholar

[26]

D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,, Math. Problems Eng., 6 (2000), 461.  doi: 10.1155/S1024123X00001435.  Google Scholar

[27]

V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey,, Automatica J. IFAC, 33 (1997), 125.  doi: 10.1016/S0005-1098(96)00141-0.  Google Scholar

[28]

S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique,, International Journal of Robust and Nonlinear Control, 23 (2013), 381.  doi: 10.1002/rnc.1834.  Google Scholar

[29]

R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems,, IEEE Transaction on Automatic Control, 37 (1992), 290.  doi: 10.1109/9.119629.  Google Scholar

[30]

Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,, Applied Mathematics and Computation, 179 (2006), 407.  doi: 10.1016/j.amc.2005.11.150.  Google Scholar

[31]

G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search,, Applied Mathematics and Computation, 215 (2009), 3082.  doi: 10.1016/j.amc.2009.09.063.  Google Scholar

[32]

G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method,, Automatica J. IFAC, 37 (2001), 565.  doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[33]

L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence,, Optimization Methods and Software, 22 (2007), 697.  doi: 10.1080/10556780701223293.  Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]