• Previous Article
    Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing
  • JIMO Home
  • This Issue
  • Next Article
    The FIFO single-server queue with disasters and multiple Markovian arrival streams
January  2014, 10(1): 89-112. doi: 10.3934/jimo.2014.10.89

Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy

1. 

Department of Statistics, College of Sciences, Yanshan University, Qinhuangdao 066004

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

3. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

4. 

College of Science, Yanshan University, Qinhuangdao 066004, China

Received  September 2012 Revised  June 2013 Published  October 2013

In this paper, we consider an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy, where we examine the case that customer impatience is due to the servers' vacation. Whenever a system becomes empty, the server takes a vacation. However, the server is allowed to take a maximum number $K$ of vacations if the system remains empty after the end of a vacation. This vacation policy includes both a single vacation and multiple vacations as special cases. We derive the probability generating functions of the steady-state probabilities and obtain the closed-form expressions of the system sizes when the server is in different states. We further make comparisons between the mean system sizes under the variant vacation policy and the mean system sizes under the single vacation policy or the multiple vacation policy. In addition, we obtain the closed-form expressions for other important performance measures and discuss their monotonicity with respect $K$. Finally, we present some numerical results to show the effects of some parameters on some performance measures.
Citation: Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89
References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process,, Applied Mathematical Modelling, 33 (2009), 3025.  doi: 10.1016/j.apm.2008.10.021.  Google Scholar

[4]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[5]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.   Google Scholar

[6]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[7]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreilable queue,, European Journal of Operational Research, 203 (2010), 143.   Google Scholar

[8]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[9]

J. C. Ke, Operating characteristic analysis on the $M^{[X]}$/G/1 system with a variant vacation policy and balking,, Applied Mathematical Modelling, 31 (2007), 1321.  doi: 10.1016/j.apm.2006.02.012.  Google Scholar

[10]

J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback,, Computer & Industrial Engineering, 57 (2009), 433.  doi: 10.1016/j.cie.2009.01.002.  Google Scholar

[11]

J. C. Ke, H. I. Huang and Y. K. Chu, Batch arrival queue with N-policy and at most J vacations,, Applied Mathematical Modelling, 34 (2010), 451.  doi: 10.1016/j.apm.2009.06.003.  Google Scholar

[12]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[13]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,", Part 1. North-Holland Publishing Co., (1991).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", New York: Springer, (2006).   Google Scholar

[15]

T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most $J$ vacations,, Applied Mathematical Modelling, 35 (2011), 2297.  doi: 10.1016/j.apm.2010.11.021.  Google Scholar

[16]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[17]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with and working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.  doi: 10.3934/jimo.2012.8.895.  Google Scholar

[18]

Z. G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing Systems, 38 (2001), 419.  doi: 10.1023/A:1010947911863.  Google Scholar

show all references

References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process,, Applied Mathematical Modelling, 33 (2009), 3025.  doi: 10.1016/j.apm.2008.10.021.  Google Scholar

[4]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[5]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.   Google Scholar

[6]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[7]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreilable queue,, European Journal of Operational Research, 203 (2010), 143.   Google Scholar

[8]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[9]

J. C. Ke, Operating characteristic analysis on the $M^{[X]}$/G/1 system with a variant vacation policy and balking,, Applied Mathematical Modelling, 31 (2007), 1321.  doi: 10.1016/j.apm.2006.02.012.  Google Scholar

[10]

J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback,, Computer & Industrial Engineering, 57 (2009), 433.  doi: 10.1016/j.cie.2009.01.002.  Google Scholar

[11]

J. C. Ke, H. I. Huang and Y. K. Chu, Batch arrival queue with N-policy and at most J vacations,, Applied Mathematical Modelling, 34 (2010), 451.  doi: 10.1016/j.apm.2009.06.003.  Google Scholar

[12]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[13]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,", Part 1. North-Holland Publishing Co., (1991).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", New York: Springer, (2006).   Google Scholar

[15]

T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most $J$ vacations,, Applied Mathematical Modelling, 35 (2011), 2297.  doi: 10.1016/j.apm.2010.11.021.  Google Scholar

[16]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[17]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with and working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.  doi: 10.3934/jimo.2012.8.895.  Google Scholar

[18]

Z. G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing Systems, 38 (2001), 419.  doi: 10.1023/A:1010947911863.  Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[7]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[8]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[12]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]