• Previous Article
    Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing
  • JIMO Home
  • This Issue
  • Next Article
    The FIFO single-server queue with disasters and multiple Markovian arrival streams
January  2014, 10(1): 89-112. doi: 10.3934/jimo.2014.10.89

Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy

1. 

Department of Statistics, College of Sciences, Yanshan University, Qinhuangdao 066004

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

3. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

4. 

College of Science, Yanshan University, Qinhuangdao 066004, China

Received  September 2012 Revised  June 2013 Published  October 2013

In this paper, we consider an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy, where we examine the case that customer impatience is due to the servers' vacation. Whenever a system becomes empty, the server takes a vacation. However, the server is allowed to take a maximum number $K$ of vacations if the system remains empty after the end of a vacation. This vacation policy includes both a single vacation and multiple vacations as special cases. We derive the probability generating functions of the steady-state probabilities and obtain the closed-form expressions of the system sizes when the server is in different states. We further make comparisons between the mean system sizes under the variant vacation policy and the mean system sizes under the single vacation policy or the multiple vacation policy. In addition, we obtain the closed-form expressions for other important performance measures and discuss their monotonicity with respect $K$. Finally, we present some numerical results to show the effects of some parameters on some performance measures.
Citation: Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89
References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process,, Applied Mathematical Modelling, 33 (2009), 3025.  doi: 10.1016/j.apm.2008.10.021.  Google Scholar

[4]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[5]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.   Google Scholar

[6]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[7]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreilable queue,, European Journal of Operational Research, 203 (2010), 143.   Google Scholar

[8]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[9]

J. C. Ke, Operating characteristic analysis on the $M^{[X]}$/G/1 system with a variant vacation policy and balking,, Applied Mathematical Modelling, 31 (2007), 1321.  doi: 10.1016/j.apm.2006.02.012.  Google Scholar

[10]

J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback,, Computer & Industrial Engineering, 57 (2009), 433.  doi: 10.1016/j.cie.2009.01.002.  Google Scholar

[11]

J. C. Ke, H. I. Huang and Y. K. Chu, Batch arrival queue with N-policy and at most J vacations,, Applied Mathematical Modelling, 34 (2010), 451.  doi: 10.1016/j.apm.2009.06.003.  Google Scholar

[12]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[13]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,", Part 1. North-Holland Publishing Co., (1991).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", New York: Springer, (2006).   Google Scholar

[15]

T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most $J$ vacations,, Applied Mathematical Modelling, 35 (2011), 2297.  doi: 10.1016/j.apm.2010.11.021.  Google Scholar

[16]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[17]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with and working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.  doi: 10.3934/jimo.2012.8.895.  Google Scholar

[18]

Z. G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing Systems, 38 (2001), 419.  doi: 10.1023/A:1010947911863.  Google Scholar

show all references

References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process,, Applied Mathematical Modelling, 33 (2009), 3025.  doi: 10.1016/j.apm.2008.10.021.  Google Scholar

[4]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[5]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.   Google Scholar

[6]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[7]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreilable queue,, European Journal of Operational Research, 203 (2010), 143.   Google Scholar

[8]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[9]

J. C. Ke, Operating characteristic analysis on the $M^{[X]}$/G/1 system with a variant vacation policy and balking,, Applied Mathematical Modelling, 31 (2007), 1321.  doi: 10.1016/j.apm.2006.02.012.  Google Scholar

[10]

J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback,, Computer & Industrial Engineering, 57 (2009), 433.  doi: 10.1016/j.cie.2009.01.002.  Google Scholar

[11]

J. C. Ke, H. I. Huang and Y. K. Chu, Batch arrival queue with N-policy and at most J vacations,, Applied Mathematical Modelling, 34 (2010), 451.  doi: 10.1016/j.apm.2009.06.003.  Google Scholar

[12]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[13]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,", Part 1. North-Holland Publishing Co., (1991).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", New York: Springer, (2006).   Google Scholar

[15]

T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most $J$ vacations,, Applied Mathematical Modelling, 35 (2011), 2297.  doi: 10.1016/j.apm.2010.11.021.  Google Scholar

[16]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[17]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with and working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.  doi: 10.3934/jimo.2012.8.895.  Google Scholar

[18]

Z. G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing Systems, 38 (2001), 419.  doi: 10.1023/A:1010947911863.  Google Scholar

[1]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[2]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[3]

Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial & Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851

[4]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[5]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[6]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[7]

Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial & Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939

[8]

Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453

[9]

Zsolt Saffer, Miklós Telek. Analysis of BMAP vacation queue and its application to IEEE 802.16e sleep mode. Journal of Industrial & Management Optimization, 2010, 6 (3) : 661-690. doi: 10.3934/jimo.2010.6.661

[10]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[11]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[12]

Dequan Yue, Wuyi Yue. A heterogeneous two-server network system with balking and a Bernoulli vacation schedule. Journal of Industrial & Management Optimization, 2010, 6 (3) : 501-516. doi: 10.3934/jimo.2010.6.501

[13]

Hideo Ikeda, Masayasu Mimura, Tommaso Scotti. Shadow system approach to a plankton model generating harmful algal bloom. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 829-858. doi: 10.3934/dcds.2017034

[14]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019106

[15]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[16]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[17]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[18]

Jau-Chuan Ke, Hsin-I Huang, Chuen-Horng Lin. Analysis on a queue system with heterogeneous servers and uncertain patterns. Journal of Industrial & Management Optimization, 2010, 6 (1) : 57-71. doi: 10.3934/jimo.2010.6.57

[19]

Anne Devys, Thierry Goudon, Pauline Lafitte. A model describing the growth and the size distribution of multiple metastatic tumors. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 731-767. doi: 10.3934/dcdsb.2009.12.731

[20]

Kurt Van Hautegem, Wouter Rogiest, Herwig Bruneel. Selective void creation/filling for variable size packets and multiple wavelengths. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1667-1684. doi: 10.3934/jimo.2018026

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]