July  2014, 10(3): 905-927. doi: 10.3934/jimo.2014.10.905

A hybrid approach for index tracking with practical constraints

1. 

Institute of Systems Science, Chinese Academy of Science, Beijing 100190, China, China

2. 

Department of Finance and Investment, Sun Yat-Sen University, Guangzhou 510275, China

3. 

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631

Received  March 2012 Revised  August 2013 Published  November 2013

Index tracking is a popular way for passive fund management, which aims to reproduce the performance of a market index by investing in a subset of the constituents of the index. The formulation of index tracking with some realistic constraints always leads to an optimization problem that is very hard to solve. In this paper, we propose an approximate formulation to the original optimization problem and analyze the approximation error bound. It is shown that the approximation can be reasonably close to the original problem. We consider both cases where the mean absolute error and mean square error are used as the tracking error measurements. The mean absolute error measurement results in a mixed-integer linear programming problem and can be solved by some standard solvers, such as CPLEX. The mean square error measurement leads to a mixed-integer quadratic programming problem. An efficient hybrid heuristic method is given to solve this problem. We do some numerical experiments by the use of five data sets from OR-Library. The results are promising.
Citation: Yingjie Li, Xiaoguang Yang, Shushang Zhu, Dong-Hui Li. A hybrid approach for index tracking with practical constraints. Journal of Industrial & Management Optimization, 2014, 10 (3) : 905-927. doi: 10.3934/jimo.2014.10.905
References:
[1]

E. Aarts and J. Korst, Selected topics in simulated annealing,, in Essays and Surveys in Metaheuristics (eds. C. C. Ribeiro and P. Hansen) (Angra dos Reis, (1999), 1. doi: 10.1007/978-1-4615-1507-4_1. Google Scholar

[2]

J. E. Beasley, OR-Library: Distributing test problems by electronic mail,, Journal of the Operational Research Society, 41 (1990), 1069. Google Scholar

[3]

J. E. Beasley, N. Meade and T.-J. Chang, An evolutionary heuristic for the index tracking problem,, European Journal of Operation Research, 148 (2003), 621. doi: 10.1016/S0377-2217(02)00425-3. Google Scholar

[4]

S. Browne, Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark,, Finance and Stochastics, 3 (1999), 275. doi: 10.1007/s007800050063. Google Scholar

[5]

T.-J. Chang, N. Mead, J. E. Beasley and Y. M. Sharaiha, Heuristics for cardinality constrained portfolio optimisation,, Computers and Operations Research, 27 (2000), 1271. Google Scholar

[6]

N. A. Canakgoz and J. E. Beasley, Mixed-integer programming approaches for index tracking and enhanced indexation,, European Journal of Operational Research, 196 (2009), 384. doi: 10.1016/j.ejor.2008.03.015. Google Scholar

[7]

E. Çinlar, Introduction to Stochastic Processes,, Prentice-Hall, (1975). Google Scholar

[8]

R. Flethcer, Ageneral quadratic programming algorithm,, J. Inst. Math. Appl., 7 (1971), 76. Google Scholar

[9]

M. Gill and E. Këllezi, Threshold Accepting for Index Tracking,, Computing in Economics and Finance Series, (2001). Google Scholar

[10]

J. H. Holland, Adaption in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,, University of Michigan Press, (1975). Google Scholar

[11]

R. Horst, A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization,, Journal of Optimization Theory and Applications, 51 (1986), 271. doi: 10.1007/BF00939825. Google Scholar

[12]

L. Ingber, Simulated annealing: Practice versus theory,, Mathematical and Computer Modelling, 18 (1993), 29. doi: 10.1016/0895-7177(93)90204-C. Google Scholar

[13]

S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, Optimization by simulated annealing,, Science, 220 (1983), 671. doi: 10.1126/science.220.4598.671. Google Scholar

[14]

P. J. Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications,, Mathematics and its Applications, (1997). Google Scholar

[15]

H. Markowitz, Mean-Variance Analysis in Portfolio Choice and Captial Markets,, Basil Blackwell, (1987). Google Scholar

[16]

R. Moral-Escudero, R. Ruiz-Torrubiano and A. Suárez, Selection of optimal investment portfolio with cardinality constraints,, in Proceedings of the IEEE Congress on Evolutionary Computation, (2006), 2382. Google Scholar

[17]

I. H. Osman and J. P. Kelly, eds., Meta-Heuristics: Theory & Applications,, Papers from the 1995 International Conference (MIC) held in Breckenridge, (1995). Google Scholar

[18]

A. F. Perold, C. D. Gelatt and M. P. Vecchi, Dynamic strategies for asset allocation,, Financial Analysis Journal, 44 (1988), 17. Google Scholar

[19]

R. Ruiz-Torrubiano and A. Suárez, A hybrid optimization approach to index tracking,, Anneals of Operation Research, 166 (2009), 57. doi: 10.1007/s10479-008-0404-4. Google Scholar

[20]

J. Shapcott, Index Tracking: Genetic Algorithms for Investment Portfolio Selection,, Technical Report EPCC-SS92-24, (1992), 92. Google Scholar

[21]

C. M. S. Sutcliffe, Stock Index Futures: Theories and International Evidence,, 2nd edition, (1997). Google Scholar

show all references

References:
[1]

E. Aarts and J. Korst, Selected topics in simulated annealing,, in Essays and Surveys in Metaheuristics (eds. C. C. Ribeiro and P. Hansen) (Angra dos Reis, (1999), 1. doi: 10.1007/978-1-4615-1507-4_1. Google Scholar

[2]

J. E. Beasley, OR-Library: Distributing test problems by electronic mail,, Journal of the Operational Research Society, 41 (1990), 1069. Google Scholar

[3]

J. E. Beasley, N. Meade and T.-J. Chang, An evolutionary heuristic for the index tracking problem,, European Journal of Operation Research, 148 (2003), 621. doi: 10.1016/S0377-2217(02)00425-3. Google Scholar

[4]

S. Browne, Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark,, Finance and Stochastics, 3 (1999), 275. doi: 10.1007/s007800050063. Google Scholar

[5]

T.-J. Chang, N. Mead, J. E. Beasley and Y. M. Sharaiha, Heuristics for cardinality constrained portfolio optimisation,, Computers and Operations Research, 27 (2000), 1271. Google Scholar

[6]

N. A. Canakgoz and J. E. Beasley, Mixed-integer programming approaches for index tracking and enhanced indexation,, European Journal of Operational Research, 196 (2009), 384. doi: 10.1016/j.ejor.2008.03.015. Google Scholar

[7]

E. Çinlar, Introduction to Stochastic Processes,, Prentice-Hall, (1975). Google Scholar

[8]

R. Flethcer, Ageneral quadratic programming algorithm,, J. Inst. Math. Appl., 7 (1971), 76. Google Scholar

[9]

M. Gill and E. Këllezi, Threshold Accepting for Index Tracking,, Computing in Economics and Finance Series, (2001). Google Scholar

[10]

J. H. Holland, Adaption in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,, University of Michigan Press, (1975). Google Scholar

[11]

R. Horst, A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization,, Journal of Optimization Theory and Applications, 51 (1986), 271. doi: 10.1007/BF00939825. Google Scholar

[12]

L. Ingber, Simulated annealing: Practice versus theory,, Mathematical and Computer Modelling, 18 (1993), 29. doi: 10.1016/0895-7177(93)90204-C. Google Scholar

[13]

S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, Optimization by simulated annealing,, Science, 220 (1983), 671. doi: 10.1126/science.220.4598.671. Google Scholar

[14]

P. J. Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications,, Mathematics and its Applications, (1997). Google Scholar

[15]

H. Markowitz, Mean-Variance Analysis in Portfolio Choice and Captial Markets,, Basil Blackwell, (1987). Google Scholar

[16]

R. Moral-Escudero, R. Ruiz-Torrubiano and A. Suárez, Selection of optimal investment portfolio with cardinality constraints,, in Proceedings of the IEEE Congress on Evolutionary Computation, (2006), 2382. Google Scholar

[17]

I. H. Osman and J. P. Kelly, eds., Meta-Heuristics: Theory & Applications,, Papers from the 1995 International Conference (MIC) held in Breckenridge, (1995). Google Scholar

[18]

A. F. Perold, C. D. Gelatt and M. P. Vecchi, Dynamic strategies for asset allocation,, Financial Analysis Journal, 44 (1988), 17. Google Scholar

[19]

R. Ruiz-Torrubiano and A. Suárez, A hybrid optimization approach to index tracking,, Anneals of Operation Research, 166 (2009), 57. doi: 10.1007/s10479-008-0404-4. Google Scholar

[20]

J. Shapcott, Index Tracking: Genetic Algorithms for Investment Portfolio Selection,, Technical Report EPCC-SS92-24, (1992), 92. Google Scholar

[21]

C. M. S. Sutcliffe, Stock Index Futures: Theories and International Evidence,, 2nd edition, (1997). Google Scholar

[1]

Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1601-1623. doi: 10.3934/jimo.2017009

[2]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[3]

Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027

[4]

Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783

[5]

Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115

[6]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[7]

Zhenbo Wang, Shu-Cherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multi-integer quadratic programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 213-225. doi: 10.3934/jimo.2008.4.213

[8]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[9]

Fanwen Meng, Kiok Liang Teow, Kelvin Wee Sheng Teo, Chee Kheong Ooi, Seow Yian Tay. Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records. Journal of Industrial & Management Optimization, 2019, 15 (2) : 947-962. doi: 10.3934/jimo.2018079

[10]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[11]

Mahmoud Ameri, Armin Jarrahi. An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018179

[12]

T. W. Leung, Chi Kin Chan, Marvin D. Troutt. A mixed simulated annealing-genetic algorithm approach to the multi-buyer multi-item joint replenishment problem: advantages of meta-heuristics. Journal of Industrial & Management Optimization, 2008, 4 (1) : 53-66. doi: 10.3934/jimo.2008.4.53

[13]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[14]

Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020

[15]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019102

[16]

Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99

[17]

Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial & Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497

[18]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[19]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[20]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

[Back to Top]