July  2015, 11(3): 1021-1040. doi: 10.3934/jimo.2015.11.1021

Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch

1. 

Department of Business Administration, Takming University of Science and Technology, 56 Huan-Shan Rd, Section 1, Taipei 114, Taiwan

2. 

Department of Logistics, Takming University of Science and Technology, 56 Huan-Shan Rd, Section 1, Taipei 114, Taiwan, Taiwan

Received  May 2013 Revised  May 2014 Published  October 2014

This study focuses on the inventory problems for serial-type and assembly-type supply chains. Since the mainline and each branch line of the assembly-type supply chain can be treated as a serial-type supply chain, a model of a serial-type supply chain is first constructed and then an integrated model is developed for the whole assembly-type supply chain. Both problems are solved optimally by the proposed polynomial-time algorithm, which determines the economic lot size, the optimal batch sizes, and the number of batches for each stage. Numerical examples are included to illustrate the algorithmic procedures.
Citation: Jason Chao-Hsien Pan, Ku-Kuang Chang, Yu-Cheng Hsiao. Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch. Journal of Industrial & Management Optimization, 2015, 11 (3) : 1021-1040. doi: 10.3934/jimo.2015.11.1021
References:
[1]

G. P. Cachon and P. H. Zipkin, Competitive and cooperative inventory policies in a two-stage supply chain,, Management Science, 45 (1999), 936. doi: 10.1287/mnsc.45.7.936. Google Scholar

[2]

H. Glock, Batch sizing with controllable production rates,, Int. J. Prod. Res., 48 (2010), 5925. doi: 10.1080/00207540903170906. Google Scholar

[3]

S. K. Goyal, Determination of optimum production quantity for a two-stage production system,, Oper. Res. Q., 28 (1977), 865. doi: 10.1057/jors.1977.174. Google Scholar

[4]

S. K. Goyal, Economic batch quantity in a multi-stage production system,, Int. J. Prod. Res., 16 (1978), 267. doi: 10.1080/00207547808930019. Google Scholar

[5]

S. K. Goyal, Note on: Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 23 (1976), 332. doi: 10.1287/mnsc.23.3.332. Google Scholar

[6]

S. K. Goyal and A. Z. Szendrovits, A constant lot size model with equal and unequal sized batch shipments between production stages,, Eng. Costs Prod. Econ., 10 (1986), 203. doi: 10.1016/S0167-188X(86)80002-7. Google Scholar

[7]

W. T. Ho, J. C. H. Pan and Y. C. Hsiao, Optimizing multi-stage production for an assembly-type supply chain with unequal sized batch shipments,, J Optim Theory Appl., 153 (2012), 513. doi: 10.1007/s10957-011-9951-y. Google Scholar

[8]

J. K. Jha and K. Shanker, Two-echelon supply chain inventory model with controllable lead time and service level constraint,, Comput. Ind. Eng., 57 (2009), 1096. doi: 10.1016/j.cie.2009.04.018. Google Scholar

[9]

H. T. Lee and J. C. Wu, A study on inventory replenishment policies in a two-echelon supply chain system,, Comput. Ind. Eng., 51 (2006), 257. doi: 10.1016/j.cie.2006.01.005. Google Scholar

[10]

R. R. Lummus, R. J. Vokurka and K. L. Alber, Strategic supply chain planning,, Journal of Production Inventory Management, 39 (1998), 49. Google Scholar

[11]

N. Y. Shenas, A. E. Jahromi and S. T. A. Niaki, General bounds for the optimal value of retailers' reorder point in a two-level inventory control system with and without information sharing,, Int. J. Adv. Manuf. Technol., 48 (2010), 383. doi: 10.1007/s00170-009-2280-8. Google Scholar

[12]

Z. Szendrovits, Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 22 (1975), 298. doi: 10.1287/mnsc.22.3.298. Google Scholar

[13]

Z. Szendrovits and Z. Drezner, Optimizing multi-stage production with constant lot size and varying numbers of batches,, Omega-International Journal of Management Science, 8 (1980), 623. doi: 10.1016/0305-0483(80)90003-1. Google Scholar

[14]

C. Vercellis, Multi-plant production planning in capacitated self-configuring two-stage serial systems,, Eur. J. Oper. Res., 119 (1999), 451. doi: 10.1016/S0377-2217(99)00146-0. Google Scholar

[15]

S. Wang and B. R. Sarker, An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy,, Eur. J. Oper. Res., 162 (2005), 153. doi: 10.1016/j.ejor.2003.10.038. Google Scholar

show all references

References:
[1]

G. P. Cachon and P. H. Zipkin, Competitive and cooperative inventory policies in a two-stage supply chain,, Management Science, 45 (1999), 936. doi: 10.1287/mnsc.45.7.936. Google Scholar

[2]

H. Glock, Batch sizing with controllable production rates,, Int. J. Prod. Res., 48 (2010), 5925. doi: 10.1080/00207540903170906. Google Scholar

[3]

S. K. Goyal, Determination of optimum production quantity for a two-stage production system,, Oper. Res. Q., 28 (1977), 865. doi: 10.1057/jors.1977.174. Google Scholar

[4]

S. K. Goyal, Economic batch quantity in a multi-stage production system,, Int. J. Prod. Res., 16 (1978), 267. doi: 10.1080/00207547808930019. Google Scholar

[5]

S. K. Goyal, Note on: Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 23 (1976), 332. doi: 10.1287/mnsc.23.3.332. Google Scholar

[6]

S. K. Goyal and A. Z. Szendrovits, A constant lot size model with equal and unequal sized batch shipments between production stages,, Eng. Costs Prod. Econ., 10 (1986), 203. doi: 10.1016/S0167-188X(86)80002-7. Google Scholar

[7]

W. T. Ho, J. C. H. Pan and Y. C. Hsiao, Optimizing multi-stage production for an assembly-type supply chain with unequal sized batch shipments,, J Optim Theory Appl., 153 (2012), 513. doi: 10.1007/s10957-011-9951-y. Google Scholar

[8]

J. K. Jha and K. Shanker, Two-echelon supply chain inventory model with controllable lead time and service level constraint,, Comput. Ind. Eng., 57 (2009), 1096. doi: 10.1016/j.cie.2009.04.018. Google Scholar

[9]

H. T. Lee and J. C. Wu, A study on inventory replenishment policies in a two-echelon supply chain system,, Comput. Ind. Eng., 51 (2006), 257. doi: 10.1016/j.cie.2006.01.005. Google Scholar

[10]

R. R. Lummus, R. J. Vokurka and K. L. Alber, Strategic supply chain planning,, Journal of Production Inventory Management, 39 (1998), 49. Google Scholar

[11]

N. Y. Shenas, A. E. Jahromi and S. T. A. Niaki, General bounds for the optimal value of retailers' reorder point in a two-level inventory control system with and without information sharing,, Int. J. Adv. Manuf. Technol., 48 (2010), 383. doi: 10.1007/s00170-009-2280-8. Google Scholar

[12]

Z. Szendrovits, Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 22 (1975), 298. doi: 10.1287/mnsc.22.3.298. Google Scholar

[13]

Z. Szendrovits and Z. Drezner, Optimizing multi-stage production with constant lot size and varying numbers of batches,, Omega-International Journal of Management Science, 8 (1980), 623. doi: 10.1016/0305-0483(80)90003-1. Google Scholar

[14]

C. Vercellis, Multi-plant production planning in capacitated self-configuring two-stage serial systems,, Eur. J. Oper. Res., 119 (1999), 451. doi: 10.1016/S0377-2217(99)00146-0. Google Scholar

[15]

S. Wang and B. R. Sarker, An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy,, Eur. J. Oper. Res., 162 (2005), 153. doi: 10.1016/j.ejor.2003.10.038. Google Scholar

[1]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[2]

Fuying Jing, Zirui Lan, Yang Pan. Forecast horizon of dynamic lot size model for perishable inventory with minimum order quantities. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019010

[3]

Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009

[4]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[5]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[6]

Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439

[7]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[8]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

[9]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[10]

Ata Allah Taleizadeh, Leopoldo Eduardo Cárdenas-Barrón, Roya Sohani. Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1701-1727. doi: 10.3934/jimo.2018118

[11]

Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial & Management Optimization, 2013, 9 (1) : 13-30. doi: 10.3934/jimo.2013.9.13

[12]

Ata Allah Taleizadeh, Solaleh Sadat Kalantari, Leopoldo Eduardo Cárdenas-Barrón. Determining optimal price, replenishment lot size and number of shipments for an EPQ model with rework and multiple shipments. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1059-1071. doi: 10.3934/jimo.2015.11.1059

[13]

Pedro Piñeyro, Omar Viera. Inventory policies for the economic lot-sizing problem with remanufacturing and final disposal options. Journal of Industrial & Management Optimization, 2009, 5 (2) : 217-238. doi: 10.3934/jimo.2009.5.217

[14]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[15]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[16]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[17]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[18]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[19]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[20]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

[Back to Top]