- Previous Article
- JIMO Home
- This Issue
-
Next Article
Barzilai-Borwein-like methods for the extreme eigenvalue problem
Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch
1. | Department of Business Administration, Takming University of Science and Technology, 56 Huan-Shan Rd, Section 1, Taipei 114, Taiwan |
2. | Department of Logistics, Takming University of Science and Technology, 56 Huan-Shan Rd, Section 1, Taipei 114, Taiwan, Taiwan |
References:
[1] |
G. P. Cachon and P. H. Zipkin, Competitive and cooperative inventory policies in a two-stage supply chain,, Management Science, 45 (1999), 936.
doi: 10.1287/mnsc.45.7.936. |
[2] |
H. Glock, Batch sizing with controllable production rates,, Int. J. Prod. Res., 48 (2010), 5925.
doi: 10.1080/00207540903170906. |
[3] |
S. K. Goyal, Determination of optimum production quantity for a two-stage production system,, Oper. Res. Q., 28 (1977), 865.
doi: 10.1057/jors.1977.174. |
[4] |
S. K. Goyal, Economic batch quantity in a multi-stage production system,, Int. J. Prod. Res., 16 (1978), 267.
doi: 10.1080/00207547808930019. |
[5] |
S. K. Goyal, Note on: Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 23 (1976), 332.
doi: 10.1287/mnsc.23.3.332. |
[6] |
S. K. Goyal and A. Z. Szendrovits, A constant lot size model with equal and unequal sized batch shipments between production stages,, Eng. Costs Prod. Econ., 10 (1986), 203.
doi: 10.1016/S0167-188X(86)80002-7. |
[7] |
W. T. Ho, J. C. H. Pan and Y. C. Hsiao, Optimizing multi-stage production for an assembly-type supply chain with unequal sized batch shipments,, J Optim Theory Appl., 153 (2012), 513.
doi: 10.1007/s10957-011-9951-y. |
[8] |
J. K. Jha and K. Shanker, Two-echelon supply chain inventory model with controllable lead time and service level constraint,, Comput. Ind. Eng., 57 (2009), 1096.
doi: 10.1016/j.cie.2009.04.018. |
[9] |
H. T. Lee and J. C. Wu, A study on inventory replenishment policies in a two-echelon supply chain system,, Comput. Ind. Eng., 51 (2006), 257.
doi: 10.1016/j.cie.2006.01.005. |
[10] |
R. R. Lummus, R. J. Vokurka and K. L. Alber, Strategic supply chain planning,, Journal of Production Inventory Management, 39 (1998), 49. Google Scholar |
[11] |
N. Y. Shenas, A. E. Jahromi and S. T. A. Niaki, General bounds for the optimal value of retailers' reorder point in a two-level inventory control system with and without information sharing,, Int. J. Adv. Manuf. Technol., 48 (2010), 383.
doi: 10.1007/s00170-009-2280-8. |
[12] |
Z. Szendrovits, Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 22 (1975), 298.
doi: 10.1287/mnsc.22.3.298. |
[13] |
Z. Szendrovits and Z. Drezner, Optimizing multi-stage production with constant lot size and varying numbers of batches,, Omega-International Journal of Management Science, 8 (1980), 623.
doi: 10.1016/0305-0483(80)90003-1. |
[14] |
C. Vercellis, Multi-plant production planning in capacitated self-configuring two-stage serial systems,, Eur. J. Oper. Res., 119 (1999), 451.
doi: 10.1016/S0377-2217(99)00146-0. |
[15] |
S. Wang and B. R. Sarker, An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy,, Eur. J. Oper. Res., 162 (2005), 153.
doi: 10.1016/j.ejor.2003.10.038. |
show all references
References:
[1] |
G. P. Cachon and P. H. Zipkin, Competitive and cooperative inventory policies in a two-stage supply chain,, Management Science, 45 (1999), 936.
doi: 10.1287/mnsc.45.7.936. |
[2] |
H. Glock, Batch sizing with controllable production rates,, Int. J. Prod. Res., 48 (2010), 5925.
doi: 10.1080/00207540903170906. |
[3] |
S. K. Goyal, Determination of optimum production quantity for a two-stage production system,, Oper. Res. Q., 28 (1977), 865.
doi: 10.1057/jors.1977.174. |
[4] |
S. K. Goyal, Economic batch quantity in a multi-stage production system,, Int. J. Prod. Res., 16 (1978), 267.
doi: 10.1080/00207547808930019. |
[5] |
S. K. Goyal, Note on: Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 23 (1976), 332.
doi: 10.1287/mnsc.23.3.332. |
[6] |
S. K. Goyal and A. Z. Szendrovits, A constant lot size model with equal and unequal sized batch shipments between production stages,, Eng. Costs Prod. Econ., 10 (1986), 203.
doi: 10.1016/S0167-188X(86)80002-7. |
[7] |
W. T. Ho, J. C. H. Pan and Y. C. Hsiao, Optimizing multi-stage production for an assembly-type supply chain with unequal sized batch shipments,, J Optim Theory Appl., 153 (2012), 513.
doi: 10.1007/s10957-011-9951-y. |
[8] |
J. K. Jha and K. Shanker, Two-echelon supply chain inventory model with controllable lead time and service level constraint,, Comput. Ind. Eng., 57 (2009), 1096.
doi: 10.1016/j.cie.2009.04.018. |
[9] |
H. T. Lee and J. C. Wu, A study on inventory replenishment policies in a two-echelon supply chain system,, Comput. Ind. Eng., 51 (2006), 257.
doi: 10.1016/j.cie.2006.01.005. |
[10] |
R. R. Lummus, R. J. Vokurka and K. L. Alber, Strategic supply chain planning,, Journal of Production Inventory Management, 39 (1998), 49. Google Scholar |
[11] |
N. Y. Shenas, A. E. Jahromi and S. T. A. Niaki, General bounds for the optimal value of retailers' reorder point in a two-level inventory control system with and without information sharing,, Int. J. Adv. Manuf. Technol., 48 (2010), 383.
doi: 10.1007/s00170-009-2280-8. |
[12] |
Z. Szendrovits, Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 22 (1975), 298.
doi: 10.1287/mnsc.22.3.298. |
[13] |
Z. Szendrovits and Z. Drezner, Optimizing multi-stage production with constant lot size and varying numbers of batches,, Omega-International Journal of Management Science, 8 (1980), 623.
doi: 10.1016/0305-0483(80)90003-1. |
[14] |
C. Vercellis, Multi-plant production planning in capacitated self-configuring two-stage serial systems,, Eur. J. Oper. Res., 119 (1999), 451.
doi: 10.1016/S0377-2217(99)00146-0. |
[15] |
S. Wang and B. R. Sarker, An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy,, Eur. J. Oper. Res., 162 (2005), 153.
doi: 10.1016/j.ejor.2003.10.038. |
[1] |
Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81 |
[2] |
Fuying Jing, Zirui Lan, Yang Pan. Forecast horizon of dynamic lot size model for perishable inventory with minimum order quantities. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019010 |
[3] |
Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009 |
[4] |
Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827 |
[5] |
Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337 |
[6] |
Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439 |
[7] |
Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175 |
[8] |
Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020 |
[9] |
Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096 |
[10] |
Ata Allah Taleizadeh, Leopoldo Eduardo Cárdenas-Barrón, Roya Sohani. Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1701-1727. doi: 10.3934/jimo.2018118 |
[11] |
Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial & Management Optimization, 2013, 9 (1) : 13-30. doi: 10.3934/jimo.2013.9.13 |
[12] |
Ata Allah Taleizadeh, Solaleh Sadat Kalantari, Leopoldo Eduardo Cárdenas-Barrón. Determining optimal price, replenishment lot size and number of shipments for an EPQ model with rework and multiple shipments. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1059-1071. doi: 10.3934/jimo.2015.11.1059 |
[13] |
Pedro Piñeyro, Omar Viera. Inventory policies for the economic lot-sizing problem with remanufacturing and final disposal options. Journal of Industrial & Management Optimization, 2009, 5 (2) : 217-238. doi: 10.3934/jimo.2009.5.217 |
[14] |
Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169 |
[15] |
Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715 |
[16] |
Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026 |
[17] |
Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727 |
[18] |
Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i |
[19] |
Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339 |
[20] |
Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]