
Previous Article
Second order sufficient conditions for a class of bilevel programs with lower level secondorder cone programming problem
 JIMO Home
 This Issue

Next Article
Modelling and optimal control of blood glucose levels in the human body
Numerical solution of a pursuitevasion differential game involving two spacecraft in low earth orbit
1.  Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin, China, China 
2.  Department of Mathematics and Statistics, Curtin University, Perth 6845 
3.  Department of Mathematics and Statistics, Curtin University, Perth, Australia 
References:
[1] 
M. Bardi, Optimal Control and Viscosity Solutions of HamiltonJacobiBellman Equations,, Birkhauser, (1997). doi: 10.1007/9780817647551. 
[2] 
L. D. Berkovitz, Necessary conditions for optimal strategies in a class of differential games and control problems,, SIAM Journal on Control and Optimization, 5 (1967), 1. doi: 10.1137/0305001. 
[3] 
L. D. Berkovitz, The existence of value and saddle point in games of fixed duration,, SIAM Journal on Control and Optimization, 23 (1985), 172. doi: 10.1137/0323015. 
[4] 
M. Breitner, H. Pesch and W. Grimm, Complex differential games of pursuitevasion type with state constraints, part 2: Necessary conditions for optimal openloop strategies,, Journal of Optimization Theory and Applications, 78 (1993), 443. doi: 10.1007/BF00939877. 
[5] 
W. H. Clohessy and R. S. Wiltshire, Terminal guidance system for satellite rendezvous,, Journal of the Aerospace Sciences, 11 (1960), 653. 
[6] 
S. D. Conte and C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach,, Third Edition, (1981). 
[7] 
K. Deb, A fast and elitist multiobjective genetic algorithm: NSGAII,, IEEE Transactions on Evolutionary Computation, 6 (2002), 182. 
[8] 
A. Friedman, Differential Games,, American Mathematical Society, (1974). 
[9] 
P. E. Gill, W. Murray, M. Saunders and M. H. Wright, User's Guide for NPSOL (Version 5.0): A Fortran Package for Nonlinear Programming,, Systems and Optimization Lab, (1998). 
[10] 
A. L. Herman and B. A. Conway, Direct optimization using collocation based on highorder GaussLobatto quadrature rules,, Journal of Guidance, 19 (1996), 592. doi: 10.2514/3.21662. 
[11] 
K. Horie, Collocation with Nonlinear Programming for TwoSided Flight Path Optimization,, Ph.D. Thesis, (2002). 
[12] 
K. Horie and B. A. Conway, Optimal fighter pursuitevasion maneuvers found via twosided optimization,, Journal of Guidance, 29 (2006), 105. doi: 10.2514/1.3960. 
[13] 
R. Isaacs, Differential Games,, John Wiley and Sons, (1965). 
[14] 
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3 Optimal Control Software: Theory and User Manual,, Department of Mathematics, (2002). 
[15] 
C. Jiang, Q. Lin, C. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154 (2012), 30. doi: 10.1007/s1095701200069. 
[16] 
B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minmax optimal control problems with applications,, ANZIAM Journal, 51 (2009), 162. doi: 10.1017/S1446181110000040. 
[17] 
B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224 (2013), 866. doi: 10.1016/j.amc.2013.08.092. 
[18] 
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260. doi: 10.1007/s1095701199045. 
[19] 
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275. doi: 10.3934/jimo.2014.10.275. 
[20] 
R. C. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571. doi: 10.3934/naco.2012.2.571. 
[21] 
R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250. doi: 10.1016/j.automatica.2009.05.029. 
[22] 
H. J. Oberle and W. Grimm, BNDSCO: A Program for the Numerical Solution of Optimal Control Problems,, Inst. für Angewandte Math. der Univ. Hamburg, (2001). 
[23] 
M. Pontani and B. A. Conway, Optimal interception of evasive missile warheads: Numerical solution of the differential game,, Journal of Guidance, 31 (2008), 1111. 
[24] 
M. Pontani and B. A. Conway, Numerical solution of the threedimensional orbital pursuitevasion game,, Journal of Guidance, 32 (2009), 474. 
[25] 
K. Schittkowski, NLPQL: A FORTRAN subroutine for solving constrained nonlinear programming problems,, Annals of Operations Research, 5 (1986), 485. doi: 10.1007/BF02739235. 
[26] 
T. Shima and J. Shinar, Timevarying linear pursuitevasion game models with bounded controls,, Journal of Optimization Theory and Applications, 25 (2002), 607. doi: 10.2514/2.4927. 
[27] 
J. Shinar and T. Shima, Guidance law evaluation in highly nonlinear scenarios  comparison to linear analysis,, in Proceedings of the AIAA Guidance, (1999), 651. doi: 10.2514/6.19994065. 
[28] 
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,, Third Edition, (2002). doi: 10.1007/9780387217383. 
[29] 
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Longman Scientific and Technical, (1991). 
[30] 
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications,, Journal of Industrial and Management Optimization, 5 (2009), 705. doi: 10.3934/jimo.2009.5.705. 
show all references
References:
[1] 
M. Bardi, Optimal Control and Viscosity Solutions of HamiltonJacobiBellman Equations,, Birkhauser, (1997). doi: 10.1007/9780817647551. 
[2] 
L. D. Berkovitz, Necessary conditions for optimal strategies in a class of differential games and control problems,, SIAM Journal on Control and Optimization, 5 (1967), 1. doi: 10.1137/0305001. 
[3] 
L. D. Berkovitz, The existence of value and saddle point in games of fixed duration,, SIAM Journal on Control and Optimization, 23 (1985), 172. doi: 10.1137/0323015. 
[4] 
M. Breitner, H. Pesch and W. Grimm, Complex differential games of pursuitevasion type with state constraints, part 2: Necessary conditions for optimal openloop strategies,, Journal of Optimization Theory and Applications, 78 (1993), 443. doi: 10.1007/BF00939877. 
[5] 
W. H. Clohessy and R. S. Wiltshire, Terminal guidance system for satellite rendezvous,, Journal of the Aerospace Sciences, 11 (1960), 653. 
[6] 
S. D. Conte and C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach,, Third Edition, (1981). 
[7] 
K. Deb, A fast and elitist multiobjective genetic algorithm: NSGAII,, IEEE Transactions on Evolutionary Computation, 6 (2002), 182. 
[8] 
A. Friedman, Differential Games,, American Mathematical Society, (1974). 
[9] 
P. E. Gill, W. Murray, M. Saunders and M. H. Wright, User's Guide for NPSOL (Version 5.0): A Fortran Package for Nonlinear Programming,, Systems and Optimization Lab, (1998). 
[10] 
A. L. Herman and B. A. Conway, Direct optimization using collocation based on highorder GaussLobatto quadrature rules,, Journal of Guidance, 19 (1996), 592. doi: 10.2514/3.21662. 
[11] 
K. Horie, Collocation with Nonlinear Programming for TwoSided Flight Path Optimization,, Ph.D. Thesis, (2002). 
[12] 
K. Horie and B. A. Conway, Optimal fighter pursuitevasion maneuvers found via twosided optimization,, Journal of Guidance, 29 (2006), 105. doi: 10.2514/1.3960. 
[13] 
R. Isaacs, Differential Games,, John Wiley and Sons, (1965). 
[14] 
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3 Optimal Control Software: Theory and User Manual,, Department of Mathematics, (2002). 
[15] 
C. Jiang, Q. Lin, C. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154 (2012), 30. doi: 10.1007/s1095701200069. 
[16] 
B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minmax optimal control problems with applications,, ANZIAM Journal, 51 (2009), 162. doi: 10.1017/S1446181110000040. 
[17] 
B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224 (2013), 866. doi: 10.1016/j.amc.2013.08.092. 
[18] 
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260. doi: 10.1007/s1095701199045. 
[19] 
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275. doi: 10.3934/jimo.2014.10.275. 
[20] 
R. C. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571. doi: 10.3934/naco.2012.2.571. 
[21] 
R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250. doi: 10.1016/j.automatica.2009.05.029. 
[22] 
H. J. Oberle and W. Grimm, BNDSCO: A Program for the Numerical Solution of Optimal Control Problems,, Inst. für Angewandte Math. der Univ. Hamburg, (2001). 
[23] 
M. Pontani and B. A. Conway, Optimal interception of evasive missile warheads: Numerical solution of the differential game,, Journal of Guidance, 31 (2008), 1111. 
[24] 
M. Pontani and B. A. Conway, Numerical solution of the threedimensional orbital pursuitevasion game,, Journal of Guidance, 32 (2009), 474. 
[25] 
K. Schittkowski, NLPQL: A FORTRAN subroutine for solving constrained nonlinear programming problems,, Annals of Operations Research, 5 (1986), 485. doi: 10.1007/BF02739235. 
[26] 
T. Shima and J. Shinar, Timevarying linear pursuitevasion game models with bounded controls,, Journal of Optimization Theory and Applications, 25 (2002), 607. doi: 10.2514/2.4927. 
[27] 
J. Shinar and T. Shima, Guidance law evaluation in highly nonlinear scenarios  comparison to linear analysis,, in Proceedings of the AIAA Guidance, (1999), 651. doi: 10.2514/6.19994065. 
[28] 
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,, Third Edition, (2002). doi: 10.1007/9780387217383. 
[29] 
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Longman Scientific and Technical, (1991). 
[30] 
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications,, Journal of Industrial and Management Optimization, 5 (2009), 705. doi: 10.3934/jimo.2009.5.705. 
[1] 
Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuitevasion games with state constraints: dynamic programming and discretetime approximations. Discrete & Continuous Dynamical Systems  A, 2000, 6 (2) : 361380. doi: 10.3934/dcds.2000.6.361 
[2] 
John A. Morgan. Interception in differential pursuit/evasion games. Journal of Dynamics & Games, 2016, 3 (4) : 335354. doi: 10.3934/jdg.2016018 
[3] 
Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275309. doi: 10.3934/jimo.2014.10.275 
[4] 
Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 115. doi: 10.3934/jimo.2019053 
[5] 
Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487510. doi: 10.3934/naco.2012.2.487 
[6] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 17431767. doi: 10.3934/dcdsb.2018235 
[7] 
Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 13931409. doi: 10.3934/dcdsb.2019021 
[8] 
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 115. doi: 10.3934/jimo.2008.4.1 
[9] 
Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543556. doi: 10.3934/jimo.2014.10.543 
[10] 
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193206. doi: 10.3934/naco.2012.2.193 
[11] 
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353362. doi: 10.3934/jimo.2008.4.353 
[12] 
HangChin Lai, JinChirng Lee, ShuhJye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967975. doi: 10.3934/jimo.2011.7.967 
[13] 
Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 44554475. doi: 10.3934/dcds.2015.35.4455 
[14] 
Hamid Reza Marzban, Hamid Reza Tabrizidooz. Solution of nonlinear delay optimal control problems using a composite pseudospectral collocation method. Communications on Pure & Applied Analysis, 2010, 9 (5) : 13791389. doi: 10.3934/cpaa.2010.9.1379 
[15] 
Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183194. doi: 10.3934/mcrf.2012.2.183 
[16] 
Jianhui Huang, Xun Li, Jiongmin Yong. A linearquadratic optimal control problem for meanfield stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97139. doi: 10.3934/mcrf.2015.5.97 
[17] 
JanHendrik Webert, Philip E. Gill, SvenJoachim Kimmerle, Matthias Gerdts. A study of structureexploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems  S, 2018, 11 (6) : 12591282. doi: 10.3934/dcdss.2018071 
[18] 
WaiKi Ching, SinMan Choi, Min Huang. Optimal service capacity in a multipleserver queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73102. doi: 10.3934/jimo.2010.6.73 
[19] 
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311322. doi: 10.3934/proc.2013.2013.311 
[20] 
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399413. doi: 10.3934/jimo.2007.3.399 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]