\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit

Abstract Related Papers Cited by
  • This paper considers a spacecraft pursuit-evasion problem taking place in low earth orbit. The problem is formulated as a zero-sum differential game in which there are two players, a pursuing spacecraft that attempts to minimize a payoff, and an evading spacecraft that attempts to maximize the same payoff. We introduce two associated optimal control problems and show that a saddle point for the differential game exists if and only if the two optimal control problems have the same optimal value. Then, on the basis of this result, we propose two computational methods for determining a saddle point solution: a semi-direct control parameterization method (SDCP method), which is based on a piecewise-constant control approximation scheme, and a hybrid method, which combines the new SDCP method with the multiple shooting method. Simulation results show that the proposed SDCP and hybrid methods are superior to the semi-direct collocation nonlinear programming method (SDCNLP method), which is widely used to solve pursuit-evasion problems in the aerospace field.
    Mathematics Subject Classification: Primary: 91A25; Secondary: 49M37, 49N90.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bardi, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, Boston, 1997.doi: 10.1007/978-0-8176-4755-1.

    [2]

    L. D. Berkovitz, Necessary conditions for optimal strategies in a class of differential games and control problems, SIAM Journal on Control and Optimization, 5 (1967), 1-24.doi: 10.1137/0305001.

    [3]

    L. D. Berkovitz, The existence of value and saddle point in games of fixed duration, SIAM Journal on Control and Optimization, 23 (1985), 172-196.doi: 10.1137/0323015.

    [4]

    M. Breitner, H. Pesch and W. Grimm, Complex differential games of pursuit-evasion type with state constraints, part 2: Necessary conditions for optimal open-loop strategies, Journal of Optimization Theory and Applications, 78 (1993), 443-463.doi: 10.1007/BF00939877.

    [5]

    W. H. Clohessy and R. S. Wiltshire, Terminal guidance system for satellite rendezvous, Journal of the Aerospace Sciences, 11 (1960), 653-658.

    [6]

    S. D. Conte and C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third Edition, McGraw-Hill, New York, 1981.

    [7]

    K. Deb, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.

    [8]

    A. Friedman, Differential Games, American Mathematical Society, Rhode Island, 1974.

    [9]

    P. E. Gill, W. Murray, M. Saunders and M. H. Wright, User's Guide for NPSOL (Version 5.0): A Fortran Package for Nonlinear Programming, Systems and Optimization Lab, Stanford University, California, 1998.

    [10]

    A. L. Herman and B. A. Conway, Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules, Journal of Guidance, Control, and Dynamics, 19 (1996), 592-599.doi: 10.2514/3.21662.

    [11]

    K. Horie, Collocation with Nonlinear Programming for Two-Sided Flight Path Optimization, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, 2002.

    [12]

    K. Horie and B. A. Conway, Optimal fighter pursuit-evasion maneuvers found via two-sided optimization, Journal of Guidance, Control, and Dynamics, 29 (2006), 105-112.doi: 10.2514/1.3960.

    [13]

    R. Isaacs, Differential Games, John Wiley and Sons, New York, 1965.

    [14]

    L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3 Optimal Control Software: Theory and User Manual, Department of Mathematics, The University of Western Australia, 2002.

    [15]

    C. Jiang, Q. Lin, C. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154 (2012), 30-53.doi: 10.1007/s10957-012-0006-9.

    [16]

    B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minmax optimal control problems with applications, ANZIAM Journal, 51 (2009), 162-177.doi: 10.1017/S1446181110000040.

    [17]

    B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224 (2013), 866-875.doi: 10.1016/j.amc.2013.08.092.

    [18]

    B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.doi: 10.1007/s10957-011-9904-5.

    [19]

    Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.doi: 10.3934/jimo.2014.10.275.

    [20]

    R. C. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: New convergence results, Numerical Algebra, Control, and Optimization, 2 (2012), 571-599.doi: 10.3934/naco.2012.2.571.

    [21]

    R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029.

    [22]

    H. J. Oberle and W. Grimm, BNDSCO: A Program for the Numerical Solution of Optimal Control Problems, Inst. für Angewandte Math. der Univ. Hamburg, 2001.

    [23]

    M. Pontani and B. A. Conway, Optimal interception of evasive missile warheads: Numerical solution of the differential game, Journal of Guidance, Control, and Dynamics, 31 (2008), 1111-1122.

    [24]

    M. Pontani and B. A. Conway, Numerical solution of the three-dimensional orbital pursuit-evasion game, Journal of Guidance, Control, and Dynamics, 32 (2009), 474-487.

    [25]

    K. Schittkowski, NLPQL: A FORTRAN subroutine for solving constrained nonlinear programming problems, Annals of Operations Research, 5 (1986), 485-500.doi: 10.1007/BF02739235.

    [26]

    T. Shima and J. Shinar, Time-varying linear pursuit-evasion game models with bounded controls, Journal of Optimization Theory and Applications, 25 (2002), 607-618.doi: 10.2514/2.4927.

    [27]

    J. Shinar and T. Shima, Guidance law evaluation in highly nonlinear scenarios - comparison to linear analysis, in Proceedings of the AIAA Guidance, Navigation, and Control Conference, (1999), 651-661.doi: 10.2514/6.1999-4065.

    [28]

    J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third Edition, Springer, New York, 2002.doi: 10.1007/978-0-387-21738-3.

    [29]

    K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex, 1991.

    [30]

    L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718.doi: 10.3934/jimo.2009.5.705.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return