Citation: |
[1] |
P. Dubey, Inefficiency of Nash equilibria, Mathematics of Operations Research, 11 (1986), 1-8.doi: 10.1287/moor.11.1.1. |
[2] |
J. H. Hammond, Solving Asymmetric Variational Inequality problems and Systems of Equations with Generalized Nonlinear Programming Algorithms, PhD Thesis, MIT, 1985. |
[3] |
D. Han, J. Sun and M. Ang, New bounds for the price of anarchy under nonlinear and asymmetric costs, Optimization, 63 (2014), 271-284.doi: 10.1080/02331934.2011.641017. |
[4] |
R. Jahari and J. N. Tsitsiklis, Network resource allocation and a congestion game, Proceedings of the Annual Allerton Conference on Communication Control and Computing, 41 (2003), 769-778. |
[5] |
E. Koutsoupias and C. H. Papadimitriou, Worst-case equilibria, Computer Science Review, 32 (2009), 65-69.doi: 10.1016/j.cosrev.2009.04.003. |
[6] |
G. Perakis, The "price of anarchy" under nonlinear and asymmetric costs, Mathematics of Operations Research, 32 (2007), 614-628.doi: 10.1287/moor.1070.0258. |
[7] |
T. Roughgarden and E. Tardos, How bad is selfish routing, Journal of the ACM, 49 (2002), 236-259.doi: 10.1145/506147.506153. |
[8] |
R. Soeiro, A. Mousa and T. R. Oliveira and A. A. Pinto, Dynamics of human decisions, Journal of Industrial & Management Optimization, 1 (2014), 121-151.doi: 10.3934/jdg.2014.1.121. |
[9] |
J. Sun, A convergence analysis for a convex version of Dikin's algorithm, Annals of Operations Research, 62 (1996), 357-374.doi: 10.1007/BF02206823. |
[10] |
Y. Viossat, Game dynamics and Nash equilibria, Journal of Industrial & Management Optimization, 1 (2014), 537-553.doi: 10.3934/jdg.2014.1.537. |