-
Previous Article
On EOQ cost models with arbitrary purchase and transportation costs
- JIMO Home
- This Issue
-
Next Article
The inventory model under supplier's partial trade credit policy in a supply chain system
A closed-form solution for outperformance options with stochastic correlation and stochastic volatility
1. | BBVA and University Institute for Economic and Social Analysis, University of Alcalá, Mailing address: c/ Sauceda, 28 Edicio ASIA, 28050, Madrid, Spain |
  This article considers a multi-asset model based on Wishart processes that accounts for stochastic volatility and for stochastic correlations between the assets returns, as well as between their volatilities. Under the assumptions of the model this article provides semi-closed form solutions for the price of outperformance options. The article shows that the price of these options depends crucially on the term structure of the correlation corresponding to the assets returns. Furthermore, the comparison of the prices obtained under this model and under other models with constant correlations commonly used by financial institutions reveals the existence of a stochastic correlation premium.
References:
[1] |
M. Avellaneda and Y. Zhu, An e-arch model for the term structure of implied volatility of fx options,, Applied Mathematical Finance, 11 (1997), 81.
doi: 10.2139/ssrn.15150. |
[2] |
G. Bakshi, C. Cao and R. Stelzer, Do call prices and the underlying stock always move in the same direction?,, Review of Financial Studies, 13 (2000), 549.
doi: 10.1093/rfs/13.3.549. |
[3] |
C. Ball and W. Torous, Stochastic correlation across international stock markets,, Journal of Empirical Finance, 7 (2000), 373.
doi: 10.1016/S0927-5398(00)00017-7. |
[4] |
O. Barndorff-Nielsen and R. Stelzer, The multivariate supou stochastic volatility model,, Mathematical Finance, 23 (2013), 275.
doi: 10.1111/j.1467-9965.2011.00494.x. |
[5] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.
doi: 10.1086/260062. |
[6] |
P. Boyle, Options: A Monte Carlo approach,, Journal of Financial Economics, 4 (1977), 323.
doi: 10.1016/0304-405X(77)90005-8. |
[7] |
N. Branger and M. Muck, Keep on smiling? volatility surfaces and the pricing of quanto options when all covariances are stochastic,, Journal of Banking and Finance, 36 (2012), 1577. Google Scholar |
[8] |
M. Bru, Wishart processes,, Journal of Theoretical Probability, 4 (1991), 725.
doi: 10.1007/BF01259552. |
[9] |
P. Carr and L. Wu, Variance risk premiums,, Review of Financial Studies, 22 (2009), 1311.
doi: 10.1093/rfs/hhn038. |
[10] |
R. Cont and J. Da Fonseca, Dynamics of implied volatility surfaces,, Quantitative Finance, 2 (2002), 45.
doi: 10.1088/1469-7688/2/1/304. |
[11] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, Option pricing when correlations are stochastic: An analytical framework,, Review of Derivatives Research, 10 (2007), 151.
doi: 10.1007/s11147-008-9018-x. |
[12] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, A multifactor volatility Heston model,, Quantitative Finance, 8 (2008), 591.
doi: 10.1080/14697680701668418. |
[13] |
T. Daglish, J. Hull and W. Suo, Volatility surfaces, theory, rules of thumb and empirical evidence,, Quantitative Finance, 7 (2007), 507.
doi: 10.1080/14697680601087883. |
[14] |
E. Derman, Outperformance options,, in The Handbook of Exotic Options: Instruments, (1996). Google Scholar |
[15] |
E. Derman, Regimes of volatility,, Risk, 4 (1999), 55. Google Scholar |
[16] |
E. Derman and I. Kani, The volatility smile and its implied tree,, Quantitative Strategies Research Notes, (). Google Scholar |
[17] |
E. Derman, I. Kani and J. Zou, The local volatility surface: unlocking the information in index option prices,, Quantitative Strategies Research Notes, 52 (1996), 1.
doi: 10.2469/faj.v52.n4.2008. |
[18] |
E. Derman and P. Wilmott, Perfect models, imperfect world,, Business Week, (). Google Scholar |
[19] |
D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions,, Econometrica, 68 (2000), 1343.
doi: 10.1111/1468-0262.00164. |
[20] |
B. Dupire, Pricing with a smile,, Risk, 7 (1994), 18. Google Scholar |
[21] |
S. Fischer, Call option pricing when the exercise price is uncertain, and the valuation of index bonds,, Journal of Finance, 33 (1978), 169.
doi: 10.2307/2326357. |
[22] |
R. Franks and E. Schwartz, The stochastic behavior of market variance implied in the price of index options,, The Economic Journal, 101 (1991), 1460.
doi: 10.2307/2234896. |
[23] |
J. Gatheral, The Volatility Surface. A Practitioner's Guide,, John Wiley and Sons, (2006). Google Scholar |
[24] |
C. Gourieroux and R. Sufana, Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk,, Les Cahiers du CREF, (2005).
doi: 10.2139/ssrn.757312. |
[25] |
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327.
doi: 10.1093/rfs/6.2.327. |
[26] |
J. Hull and W. Suo, A methodology for assessing model risk and its application to the implied volatility function model,, Journal of Financial and Quantitative Analysis, 37 (2002), 297.
doi: 10.2307/3595007. |
[27] |
J. Hull and A. White, The pricing of options on assets with stochastic volatilities,, Journal of Financial and Quantitative Analysis, 42 (1987), 281.
doi: 10.2307/2328253. |
[28] |
T. Hurd and Z. Zhou, A fourier transform method for spread option pricing,, SIAM Journal on Financial Mathematics, 1 (2010), 142.
doi: 10.1137/090750421. |
[29] |
M. Krekel, J. de Kock, R. Korn and T. Man, An analysis of pricing methods for basket options,, Wilmott magazine, (): 82. Google Scholar |
[30] |
R. Lee, The moment formula for implied volatility at extreme strikes,, Mathematical Finance, 14 (2004), 469.
doi: 10.1111/j.0960-1627.2004.00200.x. |
[31] |
M. Leippold and F. Trojani, Asset pricing with matrix jump diffusions,, Working paper, (2008).
doi: 10.2139/ssrn.1274482. |
[32] |
A. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code,, Finance Press, (2000).
|
[33] |
M. Loretan and W. English, Evaluating correlation breakdowns during periods of market volatility,, Working paper, (2000).
doi: 10.2139/ssrn.231857. |
[34] |
J. Marabel Romo, Fitting the skew with an analytic local volatility function,, International Review of Applied Financial Issues and Economics, 3 (2011), 721. Google Scholar |
[35] |
J. Marabel Romo, Worst-of options and correlation skew under a stochastic correlation framework,, International journal of Theoretical and Applied Finance, 7 (). Google Scholar |
[36] |
W. Margrabe, The value of an option to exchange one asset for another,, Journal of Finance, 33 (1978), 177.
doi: 10.2307/2326358. |
[37] |
M. Pan, Y. Liu and H. Roth, Term structure of return correlations and international diversification: evidence from european stock markets,, The European Journal of Finance, 7 (2001), 144.
doi: 10.1080/13518470151141477. |
[38] |
M. Rubinstein, Implied binomial trees,, Journal of Finance, 49 (1994), 771.
doi: 10.2307/2329207. |
[39] |
B. Solnik, C. Boucrelle and Y. Le Fur, International market correlation and volatility,, Financial Analysts Journal, 52 (1996), 17.
doi: 10.2469/faj.v52.n5.2021. |
show all references
References:
[1] |
M. Avellaneda and Y. Zhu, An e-arch model for the term structure of implied volatility of fx options,, Applied Mathematical Finance, 11 (1997), 81.
doi: 10.2139/ssrn.15150. |
[2] |
G. Bakshi, C. Cao and R. Stelzer, Do call prices and the underlying stock always move in the same direction?,, Review of Financial Studies, 13 (2000), 549.
doi: 10.1093/rfs/13.3.549. |
[3] |
C. Ball and W. Torous, Stochastic correlation across international stock markets,, Journal of Empirical Finance, 7 (2000), 373.
doi: 10.1016/S0927-5398(00)00017-7. |
[4] |
O. Barndorff-Nielsen and R. Stelzer, The multivariate supou stochastic volatility model,, Mathematical Finance, 23 (2013), 275.
doi: 10.1111/j.1467-9965.2011.00494.x. |
[5] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.
doi: 10.1086/260062. |
[6] |
P. Boyle, Options: A Monte Carlo approach,, Journal of Financial Economics, 4 (1977), 323.
doi: 10.1016/0304-405X(77)90005-8. |
[7] |
N. Branger and M. Muck, Keep on smiling? volatility surfaces and the pricing of quanto options when all covariances are stochastic,, Journal of Banking and Finance, 36 (2012), 1577. Google Scholar |
[8] |
M. Bru, Wishart processes,, Journal of Theoretical Probability, 4 (1991), 725.
doi: 10.1007/BF01259552. |
[9] |
P. Carr and L. Wu, Variance risk premiums,, Review of Financial Studies, 22 (2009), 1311.
doi: 10.1093/rfs/hhn038. |
[10] |
R. Cont and J. Da Fonseca, Dynamics of implied volatility surfaces,, Quantitative Finance, 2 (2002), 45.
doi: 10.1088/1469-7688/2/1/304. |
[11] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, Option pricing when correlations are stochastic: An analytical framework,, Review of Derivatives Research, 10 (2007), 151.
doi: 10.1007/s11147-008-9018-x. |
[12] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, A multifactor volatility Heston model,, Quantitative Finance, 8 (2008), 591.
doi: 10.1080/14697680701668418. |
[13] |
T. Daglish, J. Hull and W. Suo, Volatility surfaces, theory, rules of thumb and empirical evidence,, Quantitative Finance, 7 (2007), 507.
doi: 10.1080/14697680601087883. |
[14] |
E. Derman, Outperformance options,, in The Handbook of Exotic Options: Instruments, (1996). Google Scholar |
[15] |
E. Derman, Regimes of volatility,, Risk, 4 (1999), 55. Google Scholar |
[16] |
E. Derman and I. Kani, The volatility smile and its implied tree,, Quantitative Strategies Research Notes, (). Google Scholar |
[17] |
E. Derman, I. Kani and J. Zou, The local volatility surface: unlocking the information in index option prices,, Quantitative Strategies Research Notes, 52 (1996), 1.
doi: 10.2469/faj.v52.n4.2008. |
[18] |
E. Derman and P. Wilmott, Perfect models, imperfect world,, Business Week, (). Google Scholar |
[19] |
D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions,, Econometrica, 68 (2000), 1343.
doi: 10.1111/1468-0262.00164. |
[20] |
B. Dupire, Pricing with a smile,, Risk, 7 (1994), 18. Google Scholar |
[21] |
S. Fischer, Call option pricing when the exercise price is uncertain, and the valuation of index bonds,, Journal of Finance, 33 (1978), 169.
doi: 10.2307/2326357. |
[22] |
R. Franks and E. Schwartz, The stochastic behavior of market variance implied in the price of index options,, The Economic Journal, 101 (1991), 1460.
doi: 10.2307/2234896. |
[23] |
J. Gatheral, The Volatility Surface. A Practitioner's Guide,, John Wiley and Sons, (2006). Google Scholar |
[24] |
C. Gourieroux and R. Sufana, Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk,, Les Cahiers du CREF, (2005).
doi: 10.2139/ssrn.757312. |
[25] |
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327.
doi: 10.1093/rfs/6.2.327. |
[26] |
J. Hull and W. Suo, A methodology for assessing model risk and its application to the implied volatility function model,, Journal of Financial and Quantitative Analysis, 37 (2002), 297.
doi: 10.2307/3595007. |
[27] |
J. Hull and A. White, The pricing of options on assets with stochastic volatilities,, Journal of Financial and Quantitative Analysis, 42 (1987), 281.
doi: 10.2307/2328253. |
[28] |
T. Hurd and Z. Zhou, A fourier transform method for spread option pricing,, SIAM Journal on Financial Mathematics, 1 (2010), 142.
doi: 10.1137/090750421. |
[29] |
M. Krekel, J. de Kock, R. Korn and T. Man, An analysis of pricing methods for basket options,, Wilmott magazine, (): 82. Google Scholar |
[30] |
R. Lee, The moment formula for implied volatility at extreme strikes,, Mathematical Finance, 14 (2004), 469.
doi: 10.1111/j.0960-1627.2004.00200.x. |
[31] |
M. Leippold and F. Trojani, Asset pricing with matrix jump diffusions,, Working paper, (2008).
doi: 10.2139/ssrn.1274482. |
[32] |
A. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code,, Finance Press, (2000).
|
[33] |
M. Loretan and W. English, Evaluating correlation breakdowns during periods of market volatility,, Working paper, (2000).
doi: 10.2139/ssrn.231857. |
[34] |
J. Marabel Romo, Fitting the skew with an analytic local volatility function,, International Review of Applied Financial Issues and Economics, 3 (2011), 721. Google Scholar |
[35] |
J. Marabel Romo, Worst-of options and correlation skew under a stochastic correlation framework,, International journal of Theoretical and Applied Finance, 7 (). Google Scholar |
[36] |
W. Margrabe, The value of an option to exchange one asset for another,, Journal of Finance, 33 (1978), 177.
doi: 10.2307/2326358. |
[37] |
M. Pan, Y. Liu and H. Roth, Term structure of return correlations and international diversification: evidence from european stock markets,, The European Journal of Finance, 7 (2001), 144.
doi: 10.1080/13518470151141477. |
[38] |
M. Rubinstein, Implied binomial trees,, Journal of Finance, 49 (1994), 771.
doi: 10.2307/2329207. |
[39] |
B. Solnik, C. Boucrelle and Y. Le Fur, International market correlation and volatility,, Financial Analysts Journal, 52 (1996), 17.
doi: 10.2469/faj.v52.n5.2021. |
[1] |
Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043 |
[2] |
Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296 |
[3] |
Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial & Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199 |
[4] |
Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167 |
[5] |
Kais Hamza, Fima C. Klebaner, Olivia Mah. Volatility in options formulae for general stochastic dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 435-446. doi: 10.3934/dcdsb.2014.19.435 |
[6] |
Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1501-1519. doi: 10.3934/jimo.2018018 |
[7] |
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029 |
[8] |
Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249 |
[9] |
Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065 |
[10] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[11] |
Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965 |
[12] |
Laurent Devineau, Pierre-Edouard Arrouy, Paul Bonnefoy, Alexandre Boumezoued. Fast calibration of the Libor market model with stochastic volatility and displaced diffusion. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-31. doi: 10.3934/jimo.2019025 |
[13] |
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199 |
[14] |
Xin-Guo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785-796. doi: 10.3934/naco.2012.2.785 |
[15] |
Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030 |
[16] |
Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354 |
[17] |
Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial & Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141 |
[18] |
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381 |
[19] |
Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027 |
[20] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]