\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On EOQ cost models with arbitrary purchase and transportation costs

Abstract Related Papers Cited by
  • We analyze an economic order quantity cost model with unit out-of-pocket holding costs, unit opportunity costs of holding, fixed ordering costs, and general purchase-transportation costs. We identify the set of purchase-transportation cost functions for which this model is easy to solve and related to solving a one-dimensional convex minimization problem. For the remaining purchase-transportation cost functions, when this problem becomes a global optimization problem, we propose a Lipschitz optimization procedure. In particular, we give an easy procedure which determines an upper bound on the optimal cycle length. Then, using this bound, we apply a well-known technique from global optimization. Also for the class of transportation functions related to full truckload (FTL) and less-than-truckload (LTL) shipments and the well-known carload discount schedule, we specialize these results and give fast and easy algorithms to calculate the optimal lot size and the corresponding optimal order-up-to-level.
    Mathematics Subject Classification: Primary: 90B05, 90B06; Secondary: 90C26, 46N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. L. Abad and V. Aggarwal, Incorporating transport cost in the lot size and pricing decisions with downward sloping demand, International Journal of Production Economics, 95 (2005), 297-305.doi: 10.1016/j.ijpe.2003.12.008.

    [2]

    F. J. Arcelus and J. E. Rowcroft, Inventory policies with freight and incremental quantity discounts, International Journal of Systems Science, 22 (1991), 2025-2037.doi: 10.1080/00207729108910771.

    [3]

    J. B. Aubin, Optima and Equilibra (An introduction to nonlinear analysis), vol. 140 of Graduate Texts in Mathematics, Springer Verlag, Berlin, 1993.doi: 10.1007/978-3-662-02959-6.

    [4]

    D. C. Aucamp, Nonlinear freight costs in the EOQ problem, European Journal of Operational Research, 9 (1982), 61-63.doi: 10.1016/0377-2217(82)90011-X.

    [5]

    W. J. Baumol and H. D. Vinod, An inventory theoretic model of freight transport demand, Management Science, 16 (1970), 413-421.doi: 10.1287/mnsc.16.7.413.

    [6]

    Z. P. Bayındır, Ş.İ. Birbil and J. Frenk, The joint replenishment problem with variable production costs, European Journal of Operational Research, 175 (2006), 622-640.doi: 10.1016/j.ejor.2005.06.005.

    [7]

    M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Third edition. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006.doi: 10.1002/0471787779.

    [8]

    C. R. Bector, Programming problems with convex fractional functions, Operations Research, 16 (1968), 383-391.doi: 10.1287/opre.16.2.383.

    [9]

    S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.doi: 10.1017/CBO9780511804441.

    [10]

    T. H. Burwell, D. S. Dave, K. E. Fitzpatrick and M. R. Roy, Economic lot size model for price-dependent demand under quantity and freight discounts, International Journal of Production Economics, 48 (1997), 141-155.doi: 10.1016/S0925-5273(96)00085-0.

    [11]

    J. R. Carter and B. G. Ferrin, Transportation costs and inventory management: Why transportation costs matter, Production and Inventory Management Journal, 37 (1996), 58-62.

    [12]

    J. R. Carter, B. G. Ferrin and C. R. Carter, The effect of less-than-truckload rates on the purchase order lot size decision, Transportation Journal, 34 (1995), 35-44.

    [13]

    J. R. Carter, B. G. Ferrin and C. R. Carter, On extending Russell and Krajewski's algorithm for economic purchase quantities, Decision Sciences, 26 (1995), 819-829.doi: 10.1111/j.1540-5915.1995.tb01577.x.

    [14]

    C. Das, A generalized discount structure and some dominance rules for selecting price-break EOQ, European Journal of Operational Research, 34 (1988), 27-38.doi: 10.1016/0377-2217(88)90452-3.

    [15]

    M. Drake and K. Marley, Handbook of EOQ Inventory Problems (Stochastic and Deterministic Models and Applications), chapter Century of the EOQ, 3-22, Springer, New York, 2014, Editor: Tsan-Ming Choi.

    [16]

    J. B. G. Frenk, M. Kaya and B. Pourghannad, chapter Generalizing the Ordering Cost and Holding-Backlog Cost Rate Functions in EOQ-Type Inventory Models, Handbook of EOQ Inventory Problems (Stochastic and Deterministic Models and Applications), Springer, New York, (2014), 79-119, Editor: Tsan-Ming Choi.

    [17]

    G. Hadley and T. Whitin, Analysis of Inventory Systems, Prentice Hall, Englewood Cliffs, 1963.

    [18]

    F. Harris, How many parts to make at once, Factory, The Magazine of Management, 10 (1913), 135-136.doi: 10.1287/opre.38.6.947.

    [19]

    R. Horst, P. M. Pardalos and N. V. Thoai, Introduction to Global Optimization, Kluwer Academic Publishers, Dordrecht, 1995.

    [20]

    H. Hwang, D. H. Moon and S. W. Shinn, An EOQ model with quantity discounts for both purchasing price and freight cost, Computers and Operations Research, 17 (1990), 73-78.doi: 10.1016/0305-0548(90)90029-7.

    [21]

    K. Iwaniec, An inventory model with full load ordering, Management Science, 25 (1979), 374-384.doi: 10.1287/mnsc.25.4.374.

    [22]

    J. V. Jucker and M. J. Rosenblatt, Single-period inventory models with demand uncertainty and quantity discounts: Behavioral implications and a new solution procedure, Naval Research Logistics Quarterly, 32 (1985), 537-550.doi: 10.1002/nav.3800320402.

    [23]

    T. W. Knowles and P. Pantumsinchai, All-units discounts for standard container sizes, Decision Sciences, 19 (1988), 848-857.doi: 10.1111/j.1540-5915.1988.tb00307.x.

    [24]

    D. Konur and A. Toptal, Analysis and applications of replenishment problems under stepwise transportation costs and generalized wholesale prices, International Journal of Production Economics, 140 (2012), 521-529.doi: 10.1016/j.ijpe.2012.07.003.

    [25]

    P. D. Larson, The economic transportation quantity, Transportation Journal, 28 (1988), 43-48.

    [26]

    C. Lee, The economic order quantity for freight discount costs, IIE Transactions, 18 (1986), 318-320.doi: 10.1080/07408178608974710.

    [27]

    S. A. Lippman, Optimal inventory policy with multiple set-up costs, Management Science, 16 (1969), 118-138.doi: 10.1287/mnsc.16.1.118.

    [28]

    S. A. Lippman, Economic order quantities and multiple set-up costs, Management Science, 18 (1971), 39-47.doi: 10.1287/mnsc.18.1.39.

    [29]

    A. Mendoza and J. A. Ventura, Incorporating quantity discounts to the EOQ model with transportation costs, International Journal of Production Economics, 113 (2008), 754-765.doi: 10.1016/j.ijpe.2007.10.010.

    [30]

    J. A. Muckstadt and A. Sapra, Principles of Inventory Management: When You Are Down to Four Order More, Springer, New York, 2010.doi: 10.1007/978-0-387-68948-7.

    [31]

    S. Nahmias, Production and Operations Analysis (Third Edition), Irwin/McGraw-Hill, New York, 1997.

    [32]

    E. Porteus, Handbooks in Operations Research and Management Science, Volume 2, Stochastic Models, chapter Stochastic Inventory Theory, 605-652, North-Holland, Amsterdam, 1990, Editors: Heyman, D.P and Sobel, M.J.

    [33]

    B. Q. Rieksts and J. A. Ventura, Two-stage inventory models with a bi-modal transportation cost, Computers & Operations Research, 37 (2010), 20-31.doi: 10.1016/j.cor.2009.02.026.

    [34]

    B. Q. Rieskts and J. A. Ventura, Optimal inventory policies with two modes of freight transportation, European Journal of Operational Research, 186 (2008), 576-585.doi: 10.1016/j.ejor.2007.01.042.

    [35]

    A. Roberts and E. Varberg, Convex Functions, Academic Press, New York, 1973.

    [36]

    R. T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1997.

    [37]

    R. M. Russell and L. J. Krajewski, Optimal purchase and transportation cost lot sizing for a single item, Decision Sciences, 22 (1991), 940-952.doi: 10.1111/j.1540-5915.1991.tb00373.x.

    [38]

    E. A. Silver, D. F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling, John Wiley and Sons, 1998.

    [39]

    S. R. Swenseth and M. R. Godfrey, Incorporating transportation costs into inventory replenishment decisions, International Journal of Production Economics, 77 (2002), 113-130.doi: 10.1016/S0925-5273(01)00230-4.

    [40]

    R. J. Tersine and S. Barman, Economic inventory/transport lot sizing with quantity and freight rate discounts, Decision Sciences, 22 (1991), 1171-1179.doi: 10.1111/j.1540-5915.1991.tb01914.x.

    [41]

    A. Toptal, Replenishment decisions under an all-units discount schedule and stepwise freight costs, European Journal of Operational Research, 198 (2009), 504-510.doi: 10.1016/j.ejor.2008.09.037.

    [42]

    A. Toptal and S. Bingöl, Transportation pricing of a truckload carrier, European Journal of Operational Research, 214 (2011), 559-567.doi: 10.1016/j.ejor.2011.05.005.

    [43]

    A. F. Veinott Jr, The status of mathematical inventory theory, Management Science, 12 (1966), 745-777.doi: 10.1287/mnsc.12.11.745.

    [44]

    P. H. Zipkin, Foundations of Inventory Management, McGraw-Hill, New York, 2000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(166) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return