\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs

Abstract Related Papers Cited by
  • In this paper, we study the optimal control problem for a company whose surplus process evolves as an upward jump diffusion with random return on investment. Three types of practical optimization problems faced by a company that can control its liquid reserves by paying dividends and injecting capital. In the first problem, we consider the classical dividend problem without capital injections. The second problem aims at maximizing the expected discounted dividend payments minus the expected discounted costs of capital injections over strategies with positive surplus at all times. The third problem has the same objective as the second one, but without the constraints on capital injections. Under the assumption of proportional transaction costs, we identify the value function and the optimal strategies for any distribution of gains.
    Mathematics Subject Classification: Primary: 93E20, 91G80; Secondary: 60J75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1992.

    [2]

    S. Asmussen, F. Avram and M. R. Pistorius, Russian and American put options under exponential phase-type Lévy models, Stochastic Processes and their Applications, 109 (2004), 79-111.doi: 10.1016/j.spa.2003.07.005.

    [3]

    B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251.doi: 10.1080/10920277.2009.10597549.

    [4]

    B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113.doi: 10.1016/j.insmatheco.2012.10.008.

    [5]

    B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion, ASTIN Bulletin, 38 (2008), 653-667.doi: 10.2143/AST.38.2.2033357.

    [6]

    B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model, Insurance: Mathematics and Economics, 41 (2007), 111-123.doi: 10.1016/j.insmatheco.2006.10.002.

    [7]

    B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion, ASTIN Bulletin, 41 (2011), 611-644.doi: 10.2139/ssrn.1709174.

    [8]

    B. Avanzi, V. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224.doi: 10.1016/j.insmatheco.2014.01.005.

    [9]

    P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model, Mathematical Finance, 15 (2005), 261-308.doi: 10.1111/j.0960-1627.2005.00220.x.

    [10]

    E. Bayraktar and M. Egami, Optimizing venture capital investments in a jump diffusion model, Mathematical Methods of Operations Research, 67 (2008), 21-42.doi: 10.1007/s00186-007-0181-x.

    [11]

    E. Bayraktar, A. E. Kyprianou and K. Yamazaki, On optimal dividends in the dual model, ASTIN Bulletin, 43 (2013), 359-372.doi: 10.1017/asb.2013.17.

    [12]

    E. Bayraktar, A. E. Kyprianou and K. Yamazaki, Optimal dividends in the dual model under transaction costs, Insurance: Mathematics and Economics, 54 (2014), 133-143.doi: 10.1016/j.insmatheco.2013.11.007.

    [13]

    E. C. K. Cheung and S. Drekic, Dividend moments in the dual model: Exact and approximate approaches, ASTIN Bulletin, 38 (2008), 399-422.doi: 10.2143/AST.38.2.2033347.

    [14]

    H. Dai, Z. Liu and N. Luan, Optimal dividend strategies in a dual model with capital injections, Mathematical Methods of Operations Research, 72 (2010), 129-143.doi: 10.1007/s00186-010-0312-7.

    [15]

    H. Dai, Z. Liu and N. Luan, Optimal financing and dividend control in the dual model, Mathematical and Computer Modelling, 53 (2011), 1921-1928.doi: 10.1016/j.mcm.2011.01.019.

    [16]

    B. De Finetti, Su un'impostazion alternativa dell teoria collecttiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.

    [17]

    W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics, Springer-Verlag, New York, 1993.

    [18]

    L. He and Z. Liang, Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs, Insurance: Mathematics and Economics, 44 (2009), 88-94.doi: 10.1016/j.insmatheco.2008.10.001.

    [19]

    S. Jaschke, A note on the inhomogeneous linear stochastic differential equation, Insurance: Mathematics and Economics, 32 (2003), 461-464.doi: 10.1016/S0167-6687(03)00134-3.

    [20]

    N. Kulenko and H. Schmidli, Optimal dividend strategies in a Cramér-Lundberg model with capital injections, Insurance: Mathematics and Economics, 43 (2008), 270-278.doi: 10.1016/j.insmatheco.2008.05.013.

    [21]

    K. Miyasawa, An economic survival game, Journal of the Operations Research Society of Japan, 4 (1962), 95-113.

    [22]

    H. Schmidli, Stochastic Control in Insurance, Springer, New York, 2008.

    [23]

    D. J. Yao, H. L. Yang and R. M. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, Journal of Industrial and Management Optimization, 6 (2010), 761-777.doi: 10.3934/jimo.2010.6.761.

    [24]

    D. J. Yao, H. L. Yang and R. W. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, European Journal of Operational Research, 211 (2011), 568-576.doi: 10.1016/j.ejor.2011.01.015.

    [25]

    D. J. Yao, R. W. Wang and L. Xu, Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model, Journal of Industrial and Management Optimization, 10 (2014), 1235-1259.doi: 10.3934/jimo.2014.10.1235.

    [26]

    C. C. Yin and Y. Z. Wen, Optimal dividends problem with a terminal value for spectrally positive Lévy processes, Insurance: Mathematics and Economics, 53 (2013), 769-773.doi: 10.1016/j.insmatheco.2013.09.019.

    [27]

    C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.doi: 10.1016/j.insmatheco.2013.02.014.

    [28]

    C. C. Yin, Y. Z. Wen and Y. X. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651.doi: 10.1017/asb.2014.12.

    [29]

    Z. M. Zhang, On a risk model with randomized dividend-decision times, Journal of Industrial and Management Optimization, 10 (2014), 1041-1058.doi: 10.3934/jimo.2014.10.1041.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return