October  2015, 11(4): 1275-1283. doi: 10.3934/jimo.2015.11.1275

Portfolio optimization using a new probabilistic risk measure

1. 

Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, WA 6102, Australia, Australia, Australia, Australia

Received  February 2014 Revised  September 2014 Published  March 2015

In this paper, we introduce a new portfolio selection method. Our method is innovative and flexible. An explicit solution is obtained, and the selection method allows for investors with different degree of risk aversion. The portfolio selection problem is formulated as a bi-criteria optimization problem which maximizes the expected portfolio return and minimizes the maximum individual risk of the assets in the portfolio. The efficient frontier using our method is compared with various efficient frontiers in the literature and found to be superior to others in the mean-variance space.
Citation: Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275
References:
[1]

P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228. doi: 10.1111/1467-9965.00068.

[2]

X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972. doi: 10.1287/mnsc.46.7.957.12039.

[3]

X. T. Cui, S. S. Zhu, X. L. Sun and D. Li, Nonlinear portfolio selection using approximate parametric Value-at-Risk, Journal of Banking & Finance, 37 (2013), 2124-2139. doi: 10.1016/j.jbankfin.2013.01.036.

[4]

X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292. doi: 10.1016/j.ejor.2004.01.040.

[5]

H. Konno, Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156.

[6]

H. Konno and K. Suzuki, A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187.

[7]

H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531. doi: 10.1287/mnsc.37.5.519.

[8]

X. Li and Z. Y. Wu, Dynamic downside risk measure and optimal asset allocation,, Presented at FMA., (). 

[9]

P. C. Lin, Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm, Journal Of Industrial And Management Optimization, 8 (2012), 549-564. doi: 10.3934/jimo.2012.8.549.

[10]

H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91.

[11]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, John Wiley & Sons, New York, 1959.

[12]

G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization, European Journal of Operational Research, 207 (2010), 409-419. doi: 10.1016/j.ejor.2010.04.025.

[13]

K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349. doi: 10.1023/A:1010909632198.

[14]

T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems, John Wiley & Sons, New York, 1981.

[15]

H. X. Yao, Z. F. Li and Y. Z. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework, Computers and Operations Research, 40 (2013), 1014-1022. doi: 10.1016/j.cor.2012.11.007.

show all references

References:
[1]

P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228. doi: 10.1111/1467-9965.00068.

[2]

X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972. doi: 10.1287/mnsc.46.7.957.12039.

[3]

X. T. Cui, S. S. Zhu, X. L. Sun and D. Li, Nonlinear portfolio selection using approximate parametric Value-at-Risk, Journal of Banking & Finance, 37 (2013), 2124-2139. doi: 10.1016/j.jbankfin.2013.01.036.

[4]

X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292. doi: 10.1016/j.ejor.2004.01.040.

[5]

H. Konno, Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156.

[6]

H. Konno and K. Suzuki, A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187.

[7]

H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531. doi: 10.1287/mnsc.37.5.519.

[8]

X. Li and Z. Y. Wu, Dynamic downside risk measure and optimal asset allocation,, Presented at FMA., (). 

[9]

P. C. Lin, Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm, Journal Of Industrial And Management Optimization, 8 (2012), 549-564. doi: 10.3934/jimo.2012.8.549.

[10]

H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91.

[11]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, John Wiley & Sons, New York, 1959.

[12]

G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization, European Journal of Operational Research, 207 (2010), 409-419. doi: 10.1016/j.ejor.2010.04.025.

[13]

K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349. doi: 10.1023/A:1010909632198.

[14]

T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems, John Wiley & Sons, New York, 1981.

[15]

H. X. Yao, Z. F. Li and Y. Z. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework, Computers and Operations Research, 40 (2013), 1014-1022. doi: 10.1016/j.cor.2012.11.007.

[1]

Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1809-1830. doi: 10.3934/jimo.2018124

[2]

Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial and Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33

[3]

Editorial Office. RETRACTION: Peng Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection. Journal of Industrial and Management Optimization, 2019, 15 (2) : 537-564. doi: 10.3934/jimo.2018056

[4]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[5]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[6]

Yahia Zare Mehrjerdi. A novel methodology for portfolio selection in fuzzy multi criteria environment using risk-benefit analysis and fractional stochastic. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021019

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial and Management Optimization, 2022, 18 (1) : 511-540. doi: 10.3934/jimo.2020166

[8]

Chenchen Zu, Xiaoqi Yang, Carisa Kwok Wai Yu. Sparse minimax portfolio and Sharpe ratio models. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021111

[9]

Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial and Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549

[10]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[11]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[12]

Yanjun Wang, Shisen Liu. Relaxation schemes for the joint linear chance constraint based on probability inequalities. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021132

[13]

Jianguo Dai, Wenxue Huang, Yuanyi Pan. A category-based probabilistic approach to feature selection. Big Data & Information Analytics, 2018  doi: 10.3934/bdia.2017020

[14]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[15]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial and Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[16]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[17]

Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1861-1871. doi: 10.3934/jimo.2019032

[18]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[19]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[20]

Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (521)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]