October  2015, 11(4): 1321-1342. doi: 10.3934/jimo.2015.11.1321

Construction schedule optimization for high arch dams based on real-time interactive simulation

1. 

State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, China, China

Received  January 2014 Revised  September 2014 Published  March 2015

The construction process of high arch dams is extremely complicated. Therefore, optimization of the construction schedule is essential for construction management to save a large amount of time and investment costs. Construction simulation is an important tool for the construction schedule optimization of high arch dams. Most current studies involving construction schedule simulations do not concurrently consider real-time construction situations and site managers' requirements. In this paper, the real-time interactive simulation is proposed that could solve this problem. The real-time construction process is the initial condition of the simulation, and the actual construction parameters are the basis of the simulation parameters. Additionally, site managers can change the simulation strategy dynamically or enter requirements based on real-time construction situations. For a simulation result, different schemes are optimized with the entropy weight method. With this method, the construction simulation can track the rapid changes in construction situations and provide a reasonable construction schedule, which increases the flexibility of the construction simulation. The optimized construction scheme could be an effective guide for site construction. With a 4D (three dimensional model and time) CAD model, the simulation process can be well expressed. A case study shows that the construction schedule can be established in real time, and it's a useful tool for decision-making.
Citation: Tao Guan, Denghua Zhong, Bingyu Ren, Pu Cheng. Construction schedule optimization for high arch dams based on real-time interactive simulation. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1321-1342. doi: 10.3934/jimo.2015.11.1321
References:
[1]

A. Alvanchi, S. Lee and S. M. AbouRizk, Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction,, Comput.-Aided Civ. Inf., 26 (2011), 77. doi: 10.1111/j.1467-8667.2010.00650.x. Google Scholar

[2]

A. H. Behzadan and V. R. Kamat, Automated generation of operations level construction animations in outdoor augmented reality,, J. Comput. Civ. Eng., 23 (2009), 405. doi: 10.1061/(ASCE)0887-3801(2009)23:6(405). Google Scholar

[3]

D. Y. Chang, RESQUE: a resource based simulation for construction process planning,, Ph.D thesis, (1986). Google Scholar

[4]

S. M. Chen, F. H. Griffis, P. H. Chen and L. M. Chang, Simulation and analytical techniques for construction resource planning and scheduling,, Automat. Constr., 21 (2012), 99. doi: 10.1016/j.autcon.2011.05.018. Google Scholar

[5]

S. Christodoulou, Ant colony optimization in construction scheduling,, Proc. of the 2005 ASCE Int. Conf. Comput. Civ. Eng., 179 (2005), 1. doi: 10.1061/40794(179)167. Google Scholar

[6]

C. W. Feng, Y. J. Chen and J. R. Huang, Using the MD CAD model to develop the time-cost integrated schedule for construction projects,, Automat. Constr., 19 (2010), 347. Google Scholar

[7]

A. G. Hadigheh and T. Terlaky, Generalized support set invariancy sensitivity analysis in linear optimization,, J. Ind. Manage. Optim., 2 (2006), 1. doi: 10.3934/jimo.2006.2.1. Google Scholar

[8]

D. Hajjar and S. M. AbouRizk, Unified modeling methodology for construction simulation,, J. Constr. Eng. Manage., 128 (2002), 174. doi: 10.1061/(ASCE)0733-9364(2002)128:2(174). Google Scholar

[9]

D. W. Halpin, An Investigation of the Use of Simulation Networks for Modeling Construction Operations,, Ph.D thesis, (1973). Google Scholar

[10]

T. Huang, C. W. Kong, H. Guo, A. Baldwin and H. Li, A virtual prototyping system for simulating construction processes,, Automat. Constr., 16 (2007), 576. doi: 10.1016/j.autcon.2006.09.007. Google Scholar

[11]

V. R. Kamat and J. C. Martinez, Visualizing simulated construction operations in 3D,, J. Comput. Civ. Eng., 15 (2001), 329. doi: 10.1061/(ASCE)0887-3801(2001)15:4(329). Google Scholar

[12]

D. P. Kavanagh, SIREN: A repetitive construction simulation model,, J. Constr. Eng. Manage., 111 (1985), 308. doi: 10.1061/(ASCE)0733-9364(1985)111:3(308). Google Scholar

[13]

K. J. Kim and G. E. Gibson Jr., Interactive simulation modeling for heavy construction operations,, Automat. Constr., 12 (2003), 97. doi: 10.1016/S0926-5805(02)00048-1. Google Scholar

[14]

L. Y. Liu, COOPS: Construction Object-Oriented Simulation System,, Ph.D thesis, (1991). Google Scholar

[15]

M. Moghadam, M. Al-Hussein, S. Al-Jibouri and A. Telyas, Post simulation visualization model for effective scheduling of modular building construction,, Can. J. Civ. Eng., 39 (2012), 1053. Google Scholar

[16]

H. Moon, H. Kim, V. R. Kamat and L. Kang, BIM-based construction scheduling method using optimization theory for reducing activity overlaps,, J. Comput. Civ. Eng., 2013 (2013). doi: 10.1061/(ASCE)CP.1943-5487.0000342. Google Scholar

[17]

J. J. Shi, Activity-based construction (ABC) modeling and simulation method,, J. Constr. Eng. Manage., 125 (1999), 354. doi: 10.1061/(ASCE)0733-9364(1999)125:5(354). Google Scholar

[18]

L. Song and N. N. Eldin, Adaptive real-time tracking and simulation of heavy construction operations for look-ahead scheduling,, Automat. Constr., 27 (2012), 32. doi: 10.1016/j.autcon.2012.05.007. Google Scholar

[19]

P. Sukumaran, M. E. Bayraktar, T. H. Hong and M. Hastak, Model for analysis of factors affecting construction schedule in highway work zones,, J. Transp. Eng., 132 (2006), 508. doi: 10.1061/(ASCE)0733-947X(2006)132:6(508). Google Scholar

[20]

C. Tebo, A. Mukherjee and N. Onder, A multipurpose simulation platform for decision-making in construction management,, Proc. Winter Simul. Conf., (2010), 3123. doi: 10.1109/WSC.2010.5679005. Google Scholar

[21]

T. C. Wang and H. D. Lee, Developing a fuzzy TOPSIS approach based on subjective weights and objective weights,, Expert Syst. Appl., 36 (2009), 8980. doi: 10.1016/j.eswa.2008.11.035. Google Scholar

[22]

Y. Zhang, S. M. AbouRizk, H. Xie and E. Moghani, Design and implementation of loose-coupling visualization components in a distributed construction simulation environment with HLA,, J. Comput. Civ. Eng., 26 (2012), 248. doi: 10.1061/(ASCE)CP.1943-5487.0000131. Google Scholar

[23]

D. Zhong, J. Li, H. Zhu and L. Song, Geographic information system-based visual simulation methodology and its application in concrete dam construction processes,, J. Constr. Eng. Manage., 130 (2004), 742. doi: 10.1061/(ASCE)0733-9364(2004)130:5(742). Google Scholar

show all references

References:
[1]

A. Alvanchi, S. Lee and S. M. AbouRizk, Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction,, Comput.-Aided Civ. Inf., 26 (2011), 77. doi: 10.1111/j.1467-8667.2010.00650.x. Google Scholar

[2]

A. H. Behzadan and V. R. Kamat, Automated generation of operations level construction animations in outdoor augmented reality,, J. Comput. Civ. Eng., 23 (2009), 405. doi: 10.1061/(ASCE)0887-3801(2009)23:6(405). Google Scholar

[3]

D. Y. Chang, RESQUE: a resource based simulation for construction process planning,, Ph.D thesis, (1986). Google Scholar

[4]

S. M. Chen, F. H. Griffis, P. H. Chen and L. M. Chang, Simulation and analytical techniques for construction resource planning and scheduling,, Automat. Constr., 21 (2012), 99. doi: 10.1016/j.autcon.2011.05.018. Google Scholar

[5]

S. Christodoulou, Ant colony optimization in construction scheduling,, Proc. of the 2005 ASCE Int. Conf. Comput. Civ. Eng., 179 (2005), 1. doi: 10.1061/40794(179)167. Google Scholar

[6]

C. W. Feng, Y. J. Chen and J. R. Huang, Using the MD CAD model to develop the time-cost integrated schedule for construction projects,, Automat. Constr., 19 (2010), 347. Google Scholar

[7]

A. G. Hadigheh and T. Terlaky, Generalized support set invariancy sensitivity analysis in linear optimization,, J. Ind. Manage. Optim., 2 (2006), 1. doi: 10.3934/jimo.2006.2.1. Google Scholar

[8]

D. Hajjar and S. M. AbouRizk, Unified modeling methodology for construction simulation,, J. Constr. Eng. Manage., 128 (2002), 174. doi: 10.1061/(ASCE)0733-9364(2002)128:2(174). Google Scholar

[9]

D. W. Halpin, An Investigation of the Use of Simulation Networks for Modeling Construction Operations,, Ph.D thesis, (1973). Google Scholar

[10]

T. Huang, C. W. Kong, H. Guo, A. Baldwin and H. Li, A virtual prototyping system for simulating construction processes,, Automat. Constr., 16 (2007), 576. doi: 10.1016/j.autcon.2006.09.007. Google Scholar

[11]

V. R. Kamat and J. C. Martinez, Visualizing simulated construction operations in 3D,, J. Comput. Civ. Eng., 15 (2001), 329. doi: 10.1061/(ASCE)0887-3801(2001)15:4(329). Google Scholar

[12]

D. P. Kavanagh, SIREN: A repetitive construction simulation model,, J. Constr. Eng. Manage., 111 (1985), 308. doi: 10.1061/(ASCE)0733-9364(1985)111:3(308). Google Scholar

[13]

K. J. Kim and G. E. Gibson Jr., Interactive simulation modeling for heavy construction operations,, Automat. Constr., 12 (2003), 97. doi: 10.1016/S0926-5805(02)00048-1. Google Scholar

[14]

L. Y. Liu, COOPS: Construction Object-Oriented Simulation System,, Ph.D thesis, (1991). Google Scholar

[15]

M. Moghadam, M. Al-Hussein, S. Al-Jibouri and A. Telyas, Post simulation visualization model for effective scheduling of modular building construction,, Can. J. Civ. Eng., 39 (2012), 1053. Google Scholar

[16]

H. Moon, H. Kim, V. R. Kamat and L. Kang, BIM-based construction scheduling method using optimization theory for reducing activity overlaps,, J. Comput. Civ. Eng., 2013 (2013). doi: 10.1061/(ASCE)CP.1943-5487.0000342. Google Scholar

[17]

J. J. Shi, Activity-based construction (ABC) modeling and simulation method,, J. Constr. Eng. Manage., 125 (1999), 354. doi: 10.1061/(ASCE)0733-9364(1999)125:5(354). Google Scholar

[18]

L. Song and N. N. Eldin, Adaptive real-time tracking and simulation of heavy construction operations for look-ahead scheduling,, Automat. Constr., 27 (2012), 32. doi: 10.1016/j.autcon.2012.05.007. Google Scholar

[19]

P. Sukumaran, M. E. Bayraktar, T. H. Hong and M. Hastak, Model for analysis of factors affecting construction schedule in highway work zones,, J. Transp. Eng., 132 (2006), 508. doi: 10.1061/(ASCE)0733-947X(2006)132:6(508). Google Scholar

[20]

C. Tebo, A. Mukherjee and N. Onder, A multipurpose simulation platform for decision-making in construction management,, Proc. Winter Simul. Conf., (2010), 3123. doi: 10.1109/WSC.2010.5679005. Google Scholar

[21]

T. C. Wang and H. D. Lee, Developing a fuzzy TOPSIS approach based on subjective weights and objective weights,, Expert Syst. Appl., 36 (2009), 8980. doi: 10.1016/j.eswa.2008.11.035. Google Scholar

[22]

Y. Zhang, S. M. AbouRizk, H. Xie and E. Moghani, Design and implementation of loose-coupling visualization components in a distributed construction simulation environment with HLA,, J. Comput. Civ. Eng., 26 (2012), 248. doi: 10.1061/(ASCE)CP.1943-5487.0000131. Google Scholar

[23]

D. Zhong, J. Li, H. Zhu and L. Song, Geographic information system-based visual simulation methodology and its application in concrete dam construction processes,, J. Constr. Eng. Manage., 130 (2004), 742. doi: 10.1061/(ASCE)0733-9364(2004)130:5(742). Google Scholar

[1]

Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066

[2]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[3]

Karol Mikula, Róbert Špir, Nadine Peyriéras. Numerical algorithm for tracking cell dynamics in 4D biomedical images. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 953-967. doi: 10.3934/dcdss.2015.8.953

[4]

Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257

[5]

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial & Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587

[6]

Xiang-Sheng Wang, Luoyi Zhong. Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1055-1063. doi: 10.3934/mbe.2015.12.1055

[7]

Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi. Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks & Heterogeneous Media, 2013, 8 (3) : 825-842. doi: 10.3934/nhm.2013.8.825

[8]

Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243

[9]

Wei Huang, Ka-Fai Cedric Yiu, Henry Y. K. Lau. Semi-definite programming based approaches for real-time tractor localization in port container terminals. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 665-680. doi: 10.3934/naco.2013.3.665

[10]

Chengtao Yong, Yan Huo, Chunqiang Hu, Yanfei Lu, Guanlin Jing. A real-time aggregate data publishing scheme with adaptive ω-event differential privacy. Mathematical Foundations of Computing, 2018, 1 (3) : 295-309. doi: 10.3934/mfc.2018014

[11]

Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018178

[12]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[13]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

[14]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[15]

John V. Shebalin. Theory and simulation of real and ideal magnetohydrodynamic turbulence. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 153-174. doi: 10.3934/dcdsb.2005.5.153

[16]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[17]

Viktor L. Ginzburg and Basak Z. Gurel. On the construction of a $C^2$-counterexample to the Hamiltonian Seifert Conjecture in $\mathbb{R}^4$. Electronic Research Announcements, 2002, 8: 11-19.

[18]

Hong Zhang, Fei Yang. Optimization of capital structure in real estate enterprises. Journal of Industrial & Management Optimization, 2015, 11 (3) : 969-983. doi: 10.3934/jimo.2015.11.969

[19]

Peng Yu, Qiang Du. A variational construction of anisotropic mobility in phase-field simulation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 391-406. doi: 10.3934/dcdsb.2006.6.391

[20]

M. Hadjiandreou, Raul Conejeros, Vassilis S. Vassiliadis. Towards a long-term model construction for the dynamic simulation of HIV infection. Mathematical Biosciences & Engineering, 2007, 4 (3) : 489-504. doi: 10.3934/mbe.2007.4.489

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]