• Previous Article
    Construction schedule optimization for high arch dams based on real-time interactive simulation
  • JIMO Home
  • This Issue
  • Next Article
    Optimal acquisition, inventory and production decisions for a closed-loop manufacturing system with legislation constraint
October  2015, 11(4): 1343-1354. doi: 10.3934/jimo.2015.11.1343

Optimal tracking control for networked control systems with random time delays and packet dropouts

1. 

School of Computer Science, Xi'an Shiyou University, Xi'an, 710065, China

2. 

Department of Automation, Northwestern Polytechnical University, Xi'an, 710072, China, China

Received  October 2012 Revised  February 2015 Published  March 2015

This paper studies the problem of optimal output tracking control for networked control system with uncertain time delays and packet dropouts. Active time-varying sampling period strategy is proposed to ensure the random variable time delays always shorter than one sampling period. Hybrid driven modes are adopted by sensor to solve the issues of long time delay and packet dropout. By using augmentation approach, the tracking problem of this formulated within-one-step delayed discrete-time system is transformed into a general problem of non-delayed state linear quadratic regulator. A “gridding” approach is introduced to guarantee the realization of optimal output feedback control law by the solution of a series of Riccati matrix equations from an offline database that is constructed by different combination of time delays and packet dropouts. Simulation results demonstrate the effectiveness of the optimal tracking control law.
Citation: Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343
References:
[1]

N. Duan and X. J. Xie, Further results on output-feedback stabilization for a class of stochastic nonlinear systems,, IEEE Transactions on Automatic Control, 56 (2011), 1208. doi: 10.1109/TAC.2011.2107112. Google Scholar

[2]

D. M. Dawson, et al., Tracking control of rigid-link electrically-driven robot manipulators,, International Journal of Control, 56 (1992), 991. doi: 10.1080/00207179208934354. Google Scholar

[3]

H. J. Gao and T. W. Chen, Network-based $H_\infty $ output tracking control,, IEEE Transactions on Automatic Control, 53 (2008), 655. doi: 10.1109/TAC.2008.919850. Google Scholar

[4]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413. Google Scholar

[5]

S. Y. Han, et al., Near-Optimal Tracking Control for Discrete-time Systems with Delayed Input,, International Journal of Control Automation and Systems, 8 (2010), 1330. doi: 10.1007/s12555-010-0619-4. Google Scholar

[6]

C. J. Hou, Y. P. Chen and Z. L. Lu, Superconvergence property of finite element methods for parabolic optimal control problems,, Journal of Industrial and Management Optimization, 7 (2011), 927. doi: 10.3934/jimo.2011.7.927. Google Scholar

[7]

K. Ji and W. J. Kim, Stabilization of networked control system with time delays and data-packet losses,, European Journal of Control, 13 (2007), 343. doi: 10.3166/ejc.13.343-350. Google Scholar

[8]

B. Jayawardhana and G. Weiss, Tracking and disturbance rejection for fully actuated mechanical systems,, Automatica, 44 (2008), 2863. doi: 10.1016/j.automatica.2008.03.030. Google Scholar

[9]

S. Liu, L. Xie and H. S. Zhang, Linear quadratic tracking problem for discrete-time systems with multiple delays in single input channel,, International Journal of Robust and Nonlinear Control, 20 (2010), 1379. doi: 10.1002/rnc.1520. Google Scholar

[10]

M. Mauder, Robust tracking control of nonholonomic dynamic systems with application to the bi-steerable mobile robot,, Automatica, 44 (2008), 2588. doi: 10.1016/j.automatica.2008.02.012. Google Scholar

[11]

A. Naskali and A. Onat, Random network delay in model based predictive networked control systems,, in Proc. $6^{nd}$ WSEAS Int. Conf. Appl. Comput. Sci., 1 (2006), 199. Google Scholar

[12]

A. Onat, et al., Control over imperfect networks: Model-based predictive networked control systems,, IEEE Transactions on Industrial Electronics, 58 (2011), 905. doi: 10.1109/TIE.2010.2051932. Google Scholar

[13]

A. Onat and E. Parlakay, Implementation of networked predictive control system,, in Proc. 9th Real-Time Linux Workshop, 1 (2007), 85. Google Scholar

[14]

T. Suzuki, et al., Controllability and stabilizability of a networked control system with periodic communication constraints,, Systems & Control Letters, 60 (2011), 977. doi: 10.1016/j.sysconle.2011.08.004. Google Scholar

[15]

Y. Shi and B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains,, IEEE Transactions on Automatic Control, 54 (2009), 1668. doi: 10.1109/TAC.2009.2020638. Google Scholar

[16]

A. Sala, Computer control under time-varying sampling period: An LMI gridding approach,, Automatica, 41 (2005), 2077. doi: 10.1016/j.automatica.2005.05.017. Google Scholar

[17]

B. O. S. Teixeira, et al., Spacecraft tracking using sampled-data Kalman filters - An illustrative application of extended and unscented estimators,, IEEE Control Systems Magazine, 28 (2008), 78. doi: 10.1109/MCS.2008.923231. Google Scholar

[18]

Y. H. Wang, Z. M. Wang and Y. F. Zheng, On the model-based networked control for singularly perturbed systems,, International Journal of Robust and Nonlinear Control, 6 (2008), 153. doi: 10.1007/s11768-008-6152-9. Google Scholar

[19]

J. Wu and T. W. Chen, Design of networked control systems with packet dropouts,, IEEE Transactions on Automatic Control, 52 (2007), 1314. doi: 10.1109/TAC.2007.900839. Google Scholar

[20]

H. H. Wang, Optimal tracking for Discrete-Time Systems with Input Delays,, Proceedings of the 2008 Chinese Control and Decision Conference, (2008), 4033. Google Scholar

[21]

Y. L. Wang and G. H. Yang, Output tracking control for networked control systems with time delay and packet dropout,, International Journal of Control, 81 (2008), 1709. doi: 10.1080/00207170701836944. Google Scholar

[22]

Y. Wang and G. Yang, Output tracking control for discrete-time networked control systems,, IEEE American Control Conference, (2009), 5109. doi: 10.1109/ACC.2009.5159974. Google Scholar

[23]

D. Wu, J. Wu and S. Chen, Robust $H_\infty $ control for networked control systems with uncertainties and multiple-packet transmission,, IET Control Theory Appl., 4 (2010), 701. doi: 10.1049/iet-cta.2009.0090. Google Scholar

[24]

Y. L. Wang and G. H. Yang, Output tracking control for continuous-time networked control systems with communication constraints,, Proc. of the American Control Conference, (2009), 531. doi: 10.1109/ACC.2009.5159975. Google Scholar

[25]

H. H. Wang and G. Y. Tang, Observer-based optimal output tracking for discrete-time systems with multiple state and input delays,, International Journal of Control Automation and Systems, 7 (2009), 57. doi: 10.1007/s12555-009-0108-9. Google Scholar

[26]

H. W. Yu, X. M. Zhang, G. P. Lu and Y. F. Zheng, On model based networked control for singularly perturbed systems with nonlinear uncertainties,, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, (2009), 684. doi: 10.1109/CDC.2009.5400103. Google Scholar

[27]

D. Yue, Q. L. Han and J. Lam, Network-based robust $H_\infty $ control of systems with uncertainty,, Automatica, 41 (2005), 999. doi: 10.1016/j.automatica.2004.12.011. Google Scholar

[28]

X. M. Zhang, et al., Stochastic stability of networked control systems with network-induced delay and data dropout,, in Proceedings of the 45th Ieee Conference on Decision and Control, 14 (2006), 5006. doi: 10.1109/CDC.2006.376970. Google Scholar

[29]

H. G. Zhang, J. Yang and C. Y. Su, T-S fuzzy-model-based robust $H_\infty $ design for networked control systems with uncertainties,, IEEE Trans. Ind. Inf., 3 (2007), 289. Google Scholar

[30]

Q. Zhang, et al., An Enhanced LMI Approach for Mixed $H_2/H_\infty $ Flight Tracking Control,, Chinese Journal of Aeronautics, 24 (2011), 324. Google Scholar

[31]

H. B. Zeng, et al., Absolute stability and stabilization for Lurie networked control systems,, International Journal of Robust and Nonlinear Control, 21 (2011), 1667. doi: 10.1002/rnc.1658. Google Scholar

show all references

References:
[1]

N. Duan and X. J. Xie, Further results on output-feedback stabilization for a class of stochastic nonlinear systems,, IEEE Transactions on Automatic Control, 56 (2011), 1208. doi: 10.1109/TAC.2011.2107112. Google Scholar

[2]

D. M. Dawson, et al., Tracking control of rigid-link electrically-driven robot manipulators,, International Journal of Control, 56 (1992), 991. doi: 10.1080/00207179208934354. Google Scholar

[3]

H. J. Gao and T. W. Chen, Network-based $H_\infty $ output tracking control,, IEEE Transactions on Automatic Control, 53 (2008), 655. doi: 10.1109/TAC.2008.919850. Google Scholar

[4]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413. Google Scholar

[5]

S. Y. Han, et al., Near-Optimal Tracking Control for Discrete-time Systems with Delayed Input,, International Journal of Control Automation and Systems, 8 (2010), 1330. doi: 10.1007/s12555-010-0619-4. Google Scholar

[6]

C. J. Hou, Y. P. Chen and Z. L. Lu, Superconvergence property of finite element methods for parabolic optimal control problems,, Journal of Industrial and Management Optimization, 7 (2011), 927. doi: 10.3934/jimo.2011.7.927. Google Scholar

[7]

K. Ji and W. J. Kim, Stabilization of networked control system with time delays and data-packet losses,, European Journal of Control, 13 (2007), 343. doi: 10.3166/ejc.13.343-350. Google Scholar

[8]

B. Jayawardhana and G. Weiss, Tracking and disturbance rejection for fully actuated mechanical systems,, Automatica, 44 (2008), 2863. doi: 10.1016/j.automatica.2008.03.030. Google Scholar

[9]

S. Liu, L. Xie and H. S. Zhang, Linear quadratic tracking problem for discrete-time systems with multiple delays in single input channel,, International Journal of Robust and Nonlinear Control, 20 (2010), 1379. doi: 10.1002/rnc.1520. Google Scholar

[10]

M. Mauder, Robust tracking control of nonholonomic dynamic systems with application to the bi-steerable mobile robot,, Automatica, 44 (2008), 2588. doi: 10.1016/j.automatica.2008.02.012. Google Scholar

[11]

A. Naskali and A. Onat, Random network delay in model based predictive networked control systems,, in Proc. $6^{nd}$ WSEAS Int. Conf. Appl. Comput. Sci., 1 (2006), 199. Google Scholar

[12]

A. Onat, et al., Control over imperfect networks: Model-based predictive networked control systems,, IEEE Transactions on Industrial Electronics, 58 (2011), 905. doi: 10.1109/TIE.2010.2051932. Google Scholar

[13]

A. Onat and E. Parlakay, Implementation of networked predictive control system,, in Proc. 9th Real-Time Linux Workshop, 1 (2007), 85. Google Scholar

[14]

T. Suzuki, et al., Controllability and stabilizability of a networked control system with periodic communication constraints,, Systems & Control Letters, 60 (2011), 977. doi: 10.1016/j.sysconle.2011.08.004. Google Scholar

[15]

Y. Shi and B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains,, IEEE Transactions on Automatic Control, 54 (2009), 1668. doi: 10.1109/TAC.2009.2020638. Google Scholar

[16]

A. Sala, Computer control under time-varying sampling period: An LMI gridding approach,, Automatica, 41 (2005), 2077. doi: 10.1016/j.automatica.2005.05.017. Google Scholar

[17]

B. O. S. Teixeira, et al., Spacecraft tracking using sampled-data Kalman filters - An illustrative application of extended and unscented estimators,, IEEE Control Systems Magazine, 28 (2008), 78. doi: 10.1109/MCS.2008.923231. Google Scholar

[18]

Y. H. Wang, Z. M. Wang and Y. F. Zheng, On the model-based networked control for singularly perturbed systems,, International Journal of Robust and Nonlinear Control, 6 (2008), 153. doi: 10.1007/s11768-008-6152-9. Google Scholar

[19]

J. Wu and T. W. Chen, Design of networked control systems with packet dropouts,, IEEE Transactions on Automatic Control, 52 (2007), 1314. doi: 10.1109/TAC.2007.900839. Google Scholar

[20]

H. H. Wang, Optimal tracking for Discrete-Time Systems with Input Delays,, Proceedings of the 2008 Chinese Control and Decision Conference, (2008), 4033. Google Scholar

[21]

Y. L. Wang and G. H. Yang, Output tracking control for networked control systems with time delay and packet dropout,, International Journal of Control, 81 (2008), 1709. doi: 10.1080/00207170701836944. Google Scholar

[22]

Y. Wang and G. Yang, Output tracking control for discrete-time networked control systems,, IEEE American Control Conference, (2009), 5109. doi: 10.1109/ACC.2009.5159974. Google Scholar

[23]

D. Wu, J. Wu and S. Chen, Robust $H_\infty $ control for networked control systems with uncertainties and multiple-packet transmission,, IET Control Theory Appl., 4 (2010), 701. doi: 10.1049/iet-cta.2009.0090. Google Scholar

[24]

Y. L. Wang and G. H. Yang, Output tracking control for continuous-time networked control systems with communication constraints,, Proc. of the American Control Conference, (2009), 531. doi: 10.1109/ACC.2009.5159975. Google Scholar

[25]

H. H. Wang and G. Y. Tang, Observer-based optimal output tracking for discrete-time systems with multiple state and input delays,, International Journal of Control Automation and Systems, 7 (2009), 57. doi: 10.1007/s12555-009-0108-9. Google Scholar

[26]

H. W. Yu, X. M. Zhang, G. P. Lu and Y. F. Zheng, On model based networked control for singularly perturbed systems with nonlinear uncertainties,, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, (2009), 684. doi: 10.1109/CDC.2009.5400103. Google Scholar

[27]

D. Yue, Q. L. Han and J. Lam, Network-based robust $H_\infty $ control of systems with uncertainty,, Automatica, 41 (2005), 999. doi: 10.1016/j.automatica.2004.12.011. Google Scholar

[28]

X. M. Zhang, et al., Stochastic stability of networked control systems with network-induced delay and data dropout,, in Proceedings of the 45th Ieee Conference on Decision and Control, 14 (2006), 5006. doi: 10.1109/CDC.2006.376970. Google Scholar

[29]

H. G. Zhang, J. Yang and C. Y. Su, T-S fuzzy-model-based robust $H_\infty $ design for networked control systems with uncertainties,, IEEE Trans. Ind. Inf., 3 (2007), 289. Google Scholar

[30]

Q. Zhang, et al., An Enhanced LMI Approach for Mixed $H_2/H_\infty $ Flight Tracking Control,, Chinese Journal of Aeronautics, 24 (2011), 324. Google Scholar

[31]

H. B. Zeng, et al., Absolute stability and stabilization for Lurie networked control systems,, International Journal of Robust and Nonlinear Control, 21 (2011), 1667. doi: 10.1002/rnc.1658. Google Scholar

[1]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[2]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[3]

Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control & Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859

[4]

Piermarco Cannarsa, Cristina Pignotti, Carlo Sinestrari. Semiconcavity for optimal control problems with exit time. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 975-997. doi: 10.3934/dcds.2000.6.975

[5]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[6]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[7]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[8]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[9]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[10]

Alex Bombrun, Jean-Baptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2-body control system. Conference Publications, 2007, 2007 (Special) : 122-129. doi: 10.3934/proc.2007.2007.122

[11]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[12]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[13]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[14]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[15]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[16]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[19]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[20]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]