Citation: |
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 7th printing, Applied Mathematics Series, National Bureau of Standards, Washington, DC., 1968.doi: 10.1119/1.1972842. |
[2] |
R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy, Management Science, 15 (1969), 453-454. |
[3] |
A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems, Operations Research, 40 (1992), 808-813.doi: 10.1287/opre.40.4.808. |
[4] |
G. Gallego, New bounds and heuristics for ($Q,r$) policies, Management Science, 44 (1998), 219-233.doi: 10.1287/mnsc.44.2.219. |
[5] |
R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search, Journal of Industrial and Management Optimization, 7 (2011), 875-890.doi: 10.3934/jimo.2011.7.875. |
[6] |
J. O. Parr, Formula approximations to Brown's service function, Production and Inventory Management, 13 (1972), 84-86. |
[7] |
D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels, Management Science, 43 (1997), 951-965. |
[8] |
P. Zipkin, Foundations of Inventory Management, McGraw-Hill, New York, 2000. |