-
Previous Article
Modeling and solving alternative financial solutions seeking
- JIMO Home
- This Issue
-
Next Article
Statistical process control optimization with variable sampling interval and nonlinear expected loss
Approximate and exact formulas for the $(Q,r)$ inventory model
1. | Steven G. Mihaylo College of Business and Economics, California State University-Fullerton, Fullerton, CA 92634, United States |
2. | The Paul Merage School of Business, University of California, Irvine, CA 92697, United States |
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 7th printing, Applied Mathematics Series, National Bureau of Standards, Washington, DC., 1968.
doi: 10.1119/1.1972842. |
[2] |
R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy, Management Science, 15 (1969), 453-454. |
[3] |
A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems, Operations Research, 40 (1992), 808-813.
doi: 10.1287/opre.40.4.808. |
[4] |
G. Gallego, New bounds and heuristics for ($Q,r$) policies, Management Science, 44 (1998), 219-233.
doi: 10.1287/mnsc.44.2.219. |
[5] |
R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search, Journal of Industrial and Management Optimization, 7 (2011), 875-890.
doi: 10.3934/jimo.2011.7.875. |
[6] |
J. O. Parr, Formula approximations to Brown's service function, Production and Inventory Management, 13 (1972), 84-86. |
[7] |
D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels, Management Science, 43 (1997), 951-965. |
[8] |
P. Zipkin, Foundations of Inventory Management, McGraw-Hill, New York, 2000. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 7th printing, Applied Mathematics Series, National Bureau of Standards, Washington, DC., 1968.
doi: 10.1119/1.1972842. |
[2] |
R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy, Management Science, 15 (1969), 453-454. |
[3] |
A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems, Operations Research, 40 (1992), 808-813.
doi: 10.1287/opre.40.4.808. |
[4] |
G. Gallego, New bounds and heuristics for ($Q,r$) policies, Management Science, 44 (1998), 219-233.
doi: 10.1287/mnsc.44.2.219. |
[5] |
R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search, Journal of Industrial and Management Optimization, 7 (2011), 875-890.
doi: 10.3934/jimo.2011.7.875. |
[6] |
J. O. Parr, Formula approximations to Brown's service function, Production and Inventory Management, 13 (1972), 84-86. |
[7] |
D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels, Management Science, 43 (1997), 951-965. |
[8] |
P. Zipkin, Foundations of Inventory Management, McGraw-Hill, New York, 2000. |
[1] |
Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems and Imaging, 2019, 13 (4) : 787-803. doi: 10.3934/ipi.2019036 |
[2] |
François Golse. The Boltzmann-Grad limit for the Lorentz gas with a Poisson distribution of obstacles. Kinetic and Related Models, 2022, 15 (3) : 517-534. doi: 10.3934/krm.2022001 |
[3] |
Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 27-34. |
[4] |
Yuli Zhang, Lin Han, Xiaotian Zhuang. Distributionally robust front distribution center inventory optimization with uncertain multi-item orders. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1777-1795. doi: 10.3934/dcdss.2022006 |
[5] |
Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110 |
[6] |
King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219 |
[7] |
Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949 |
[8] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[9] |
Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks and Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437 |
[10] |
I-Lin Wang, Ju-Chun Lin. A compaction scheme and generator for distribution networks. Journal of Industrial and Management Optimization, 2016, 12 (1) : 117-140. doi: 10.3934/jimo.2016.12.117 |
[11] |
Yvo Desmedt, Niels Duif, Henk van Tilborg, Huaxiong Wang. Bounds and constructions for key distribution schemes. Advances in Mathematics of Communications, 2009, 3 (3) : 273-293. doi: 10.3934/amc.2009.3.273 |
[12] |
Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433 |
[13] |
Ginestra Bianconi, Riccardo Zecchina. Viable flux distribution in metabolic networks. Networks and Heterogeneous Media, 2008, 3 (2) : 361-369. doi: 10.3934/nhm.2008.3.361 |
[14] |
Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17 |
[15] |
Pieter Moree. On the distribution of the order over residue classes. Electronic Research Announcements, 2006, 12: 121-128. |
[16] |
R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial and Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237 |
[17] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021042 |
[18] |
Hanqing Jin, Shige Peng. Optimal unbiased estimation for maximal distribution. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 189-198. doi: 10.3934/puqr.2021009 |
[19] |
Eunju Hwang, Kyung Jae Kim, Bong Dae Choi. Delay distribution and loss probability of bandwidth requests under truncated binary exponential backoff mechanism in IEEE 802.16e over Gilbert-Elliot error channel. Journal of Industrial and Management Optimization, 2009, 5 (3) : 525-540. doi: 10.3934/jimo.2009.5.525 |
[20] |
Ross Callister, Duc-Son Pham, Mihai Lazarescu. Using distribution analysis for parameter selection in repstream. Mathematical Foundations of Computing, 2019, 2 (3) : 215-250. doi: 10.3934/mfc.2019015 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]