October  2015, 11(4): 1423-1434. doi: 10.3934/jimo.2015.11.1423

A trade-off between time and cost in scheduling repetitive construction projects

1. 

School of Economics and Management, North China Electric Power University, Beijing, 102206, China, China, China

Received  February 2014 Revised  October 2014 Published  March 2015

The discrete time/cost trade-off problem (DTCTP) is commonly encountered in repetitive project scheduling. The current models for this problem assume that logical sequences of activities cannot be changed in different units. However, logical sequences are often changed to shorten the project time and minimize project total cost in many practical situations. This characteristic of repetitive activities is referred to as the soft logic. This paper presents a mixed integer nonlinear programming model that combines the general DTCTP and the concept of soft logic. The execution modes of an activity in different units are also considered. The DTCTP is known to be strongly NP-hard, and the introduction of soft logic makes it even more complex. A genetic algorithm (GA) is proposed to resolve the problem. The effectiveness of the proposed GA is verified using the example of a bridge construction project presented in the previous literature. The model proposed in this paper provides more flexibility to reduce the total cost and time of a repetitive project for the planners.
Citation: Lihui Zhang, Xin Zou, Jianxun Qi. A trade-off between time and cost in scheduling repetitive construction projects. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1423-1434. doi: 10.3934/jimo.2015.11.1423
References:
[1]

D. Arditi and M. Z. Albulak, Line-of-balance scheduling in pavement construction,, Journal of Construction Engineering and Management, 112 (1986), 411. doi: 10.1061/(ASCE)0733-9364(1986)112:3(411).

[2]

I. Bakry, O. Moselhi and T. Zayed, Optimized acceleration of repetitive construction projects,, Automation in Construction, 39 (2014), 145.

[3]

L. Davis, Handbook of Genetic Algorithm,, Van Nostrand Reinhold, (1991).

[4]

P. De, E. J. Dunne, J. B. Gosh and C. E. Wells, Complexity of the discrete time-cost tradeoff problem for project networks,, Operations Research, 45 (1997), 302. doi: 10.1287/opre.45.2.302.

[5]

K. El-Rayes and O. Moselhi, Resource-driven scheduling of repetitive activities,, Construction Management and Economics, 16 (1998), 433.

[6]

A. S. Ezeldin and A. Soliman, Hybrid time-cost optimization of non-serial repetitive construction projects,, Journal of Construction Engineering and Management, 135 (2009), 42.

[7]

S. L. Fan, K. S. Sun and Y. R. Wang, GA optimization model for repetitive projects with soft logic,, Automation in Construction, 21 (2012), 253. doi: 10.1016/j.autcon.2011.06.009.

[8]

S. L. Fan and H. P. Tserng, Object-oriented scheduling for repetitive projects with soft logics,, Journal of Construction Engineering and Management, 132 (2006), 35. doi: 10.1061/(ASCE)0733-9364(2006)132:1(35).

[9]

S. L. Fan, H. P. Tserng and M. T. Wang, Development of an object-oriented scheduling model for construction projects,, Automation in Construction, 12 (2003), 283. doi: 10.1016/S0926-5805(02)00092-4.

[10]

D. J. Harmelink and J. E. Rowings, Linear scheduling model: development of controlling activity path,, Journal of Construction Engineering and Management, 124 (1998), 263. doi: 10.1061/(ASCE)0733-9364(1998)124:4(263).

[11]

K. H. Hyari, K. El-Rayes and M. El-Mashaleh, Automated trade-off between time and cost in planning repetitive construction projects,, Construction Management and Economics, 27 (2009), 749. doi: 10.1080/01446190903117793.

[12]

P. Jaskowski and A. Sobotka, Using soft precedence relations for reduction of the construction project duration,, Technological and Economic Development of Economy, 18 (2012), 262. doi: 10.3846/20294913.2012.666217.

[13]

D. W. Johnston, Linear scheduling method for highway construction,, Journal of Construction Engineering and Management, 107 (1981), 247.

[14]

L. D. Long and A. Ohsato, A genetic algorithm-based method for scheduling repetitive construction projects,, Automation in Construction, 18 (2009), 499. doi: 10.1016/j.autcon.2008.11.005.

[15]

K. G. Mattila and D. M. Abraham, Linear scheduling: past research efforts and future directions,, Engineering, 5 (1998), 294. doi: 10.1046/j.1365-232X.1998.00068.x.

[16]

W. L. Peng and C. G. Wang, A multi-mode resource-constrained discrete time-cost trade/off problem and its genetic algorithm based solution,, International Journal of Project Management, 27 (2009), 600.

[17]

R. M. Reda, PRM: repetitive project modeling,, Journal of Construction Engineering and Management, 116 (1990), 316.

[18]

S. Selinger, Construction planning for linear projects,, Journal of the Construction Division, 106 (1980), 195.

[19]

A. B. Senouci and N. N. Eldin, A time-cost trade-off algorithm for non-serial linear project,, Canadian Journal of Civil Engineering, 23 (1996), 134.

[20]

S. Tamimi and J. Diekmann, Soft logic in network analysis,, Journal of Computing in Civil Engineering, 2 (1988), 289. doi: 10.1061/(ASCE)0887-3801(1988)2:3(289).

[21]

S. B. Terry and G. Lucko, Algorithm for time-cost tradeoff analysis in construction projects by aggregating activity-level singularity functions,, Proceedings of the 2012 Construction Research Congress, (2012), 226. doi: 10.1061/9780784412329.024.

[22]

L. H. Zhang and J. X. Qi, Controlling path and controlling segment analysis in repetitive scheduling method,, Journal of Construction Engineering and Management, 138 (2012), 1341. doi: 10.1061/(ASCE)CO.1943-7862.0000535.

show all references

References:
[1]

D. Arditi and M. Z. Albulak, Line-of-balance scheduling in pavement construction,, Journal of Construction Engineering and Management, 112 (1986), 411. doi: 10.1061/(ASCE)0733-9364(1986)112:3(411).

[2]

I. Bakry, O. Moselhi and T. Zayed, Optimized acceleration of repetitive construction projects,, Automation in Construction, 39 (2014), 145.

[3]

L. Davis, Handbook of Genetic Algorithm,, Van Nostrand Reinhold, (1991).

[4]

P. De, E. J. Dunne, J. B. Gosh and C. E. Wells, Complexity of the discrete time-cost tradeoff problem for project networks,, Operations Research, 45 (1997), 302. doi: 10.1287/opre.45.2.302.

[5]

K. El-Rayes and O. Moselhi, Resource-driven scheduling of repetitive activities,, Construction Management and Economics, 16 (1998), 433.

[6]

A. S. Ezeldin and A. Soliman, Hybrid time-cost optimization of non-serial repetitive construction projects,, Journal of Construction Engineering and Management, 135 (2009), 42.

[7]

S. L. Fan, K. S. Sun and Y. R. Wang, GA optimization model for repetitive projects with soft logic,, Automation in Construction, 21 (2012), 253. doi: 10.1016/j.autcon.2011.06.009.

[8]

S. L. Fan and H. P. Tserng, Object-oriented scheduling for repetitive projects with soft logics,, Journal of Construction Engineering and Management, 132 (2006), 35. doi: 10.1061/(ASCE)0733-9364(2006)132:1(35).

[9]

S. L. Fan, H. P. Tserng and M. T. Wang, Development of an object-oriented scheduling model for construction projects,, Automation in Construction, 12 (2003), 283. doi: 10.1016/S0926-5805(02)00092-4.

[10]

D. J. Harmelink and J. E. Rowings, Linear scheduling model: development of controlling activity path,, Journal of Construction Engineering and Management, 124 (1998), 263. doi: 10.1061/(ASCE)0733-9364(1998)124:4(263).

[11]

K. H. Hyari, K. El-Rayes and M. El-Mashaleh, Automated trade-off between time and cost in planning repetitive construction projects,, Construction Management and Economics, 27 (2009), 749. doi: 10.1080/01446190903117793.

[12]

P. Jaskowski and A. Sobotka, Using soft precedence relations for reduction of the construction project duration,, Technological and Economic Development of Economy, 18 (2012), 262. doi: 10.3846/20294913.2012.666217.

[13]

D. W. Johnston, Linear scheduling method for highway construction,, Journal of Construction Engineering and Management, 107 (1981), 247.

[14]

L. D. Long and A. Ohsato, A genetic algorithm-based method for scheduling repetitive construction projects,, Automation in Construction, 18 (2009), 499. doi: 10.1016/j.autcon.2008.11.005.

[15]

K. G. Mattila and D. M. Abraham, Linear scheduling: past research efforts and future directions,, Engineering, 5 (1998), 294. doi: 10.1046/j.1365-232X.1998.00068.x.

[16]

W. L. Peng and C. G. Wang, A multi-mode resource-constrained discrete time-cost trade/off problem and its genetic algorithm based solution,, International Journal of Project Management, 27 (2009), 600.

[17]

R. M. Reda, PRM: repetitive project modeling,, Journal of Construction Engineering and Management, 116 (1990), 316.

[18]

S. Selinger, Construction planning for linear projects,, Journal of the Construction Division, 106 (1980), 195.

[19]

A. B. Senouci and N. N. Eldin, A time-cost trade-off algorithm for non-serial linear project,, Canadian Journal of Civil Engineering, 23 (1996), 134.

[20]

S. Tamimi and J. Diekmann, Soft logic in network analysis,, Journal of Computing in Civil Engineering, 2 (1988), 289. doi: 10.1061/(ASCE)0887-3801(1988)2:3(289).

[21]

S. B. Terry and G. Lucko, Algorithm for time-cost tradeoff analysis in construction projects by aggregating activity-level singularity functions,, Proceedings of the 2012 Construction Research Congress, (2012), 226. doi: 10.1061/9780784412329.024.

[22]

L. H. Zhang and J. X. Qi, Controlling path and controlling segment analysis in repetitive scheduling method,, Journal of Construction Engineering and Management, 138 (2012), 1341. doi: 10.1061/(ASCE)CO.1943-7862.0000535.

[1]

Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055

[2]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[3]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010

[4]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[5]

Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007

[6]

Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531

[7]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[8]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[9]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[10]

Kyosuke Hashimoto, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of backup-task scheduling with deadline time in cloud computing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 867-886. doi: 10.3934/jimo.2015.11.867

[11]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[12]

Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613

[13]

Dirk Frettlöh, Christoph Richard. Dynamical properties of almost repetitive Delone sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 531-556. doi: 10.3934/dcds.2014.34.531

[14]

Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems & Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95

[15]

Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1673-1686. doi: 10.3934/mbe.2013.10.1673

[16]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[17]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[18]

M. Silhavý. Ideally soft nematic elastomers. Networks & Heterogeneous Media, 2007, 2 (2) : 279-311. doi: 10.3934/nhm.2007.2.279

[19]

Rafael Diaz, Laura Gomez. Indirect influences in international trade. Networks & Heterogeneous Media, 2015, 10 (1) : 149-165. doi: 10.3934/nhm.2015.10.149

[20]

Tao Guan, Denghua Zhong, Bingyu Ren, Pu Cheng. Construction schedule optimization for high arch dams based on real-time interactive simulation. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1321-1342. doi: 10.3934/jimo.2015.11.1321

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]