January  2015, 11(1): 145-170. doi: 10.3934/jimo.2015.11.145

Modeling and solving alternative financial solutions seeking

1. 

Université de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France

2. 

MGDIS, Parc d'Innovation de Bretagne Sud, F-56038 Vannes, France, France

Received  April 2013 Revised  December 2013 Published  May 2014

In this paper we model the working of local community finances. As a result of this first step, we obtain a systemic model that is used to formalize the problem of Alternative Financial Solutions Seeking, which consists in building a collection of Alternative Multi-Year Prospective Budgets from two Multi-Year Prospective Budgets built by a finance expert. The modeling and formalization steps are led in a way that allows us to implement a software code for Alternative Financial Solutions Seeking based on a Genetic Like Algorithm.
Citation: Emmanuel Frénod, Jean-Philippe Gouigoux, Landry Touré. Modeling and solving alternative financial solutions seeking. Journal of Industrial & Management Optimization, 2015, 11 (1) : 145-170. doi: 10.3934/jimo.2015.11.145
References:
[1]

La Qualité Comptable au service d'une gestion performante des collectivités locales - Guide des bonnes pratiques Num 18, Technical report,, Académie des sciences et techniques comptables financières., ().   Google Scholar

[2]

Annexe Num 1: Plan de comptes développé des communes de 500 habitants et plus au 1ier janvier 2009, Technical report, Plan M14 de Comptabilité, French State Secretary for Finance,, (, (2009).   Google Scholar

[3]

D. Beasley, D. Bull and R. Martin, An overview of genetic algorithms. part 1, fundamentals,, University Computing, 15 (1993), 58.   Google Scholar

[4]

D. Beasley, D. Bull and R. Martin, An overview of genetic algorithms. part 2, research topics,, University Computing, 15 (1993), 170.   Google Scholar

[5]

C. Castro, C. Antònio and L. Sousa, Optimisation of shape and process parameters in metal forging using genetic algorithms,, Journal of Materials Processing Technology, 146 (2004), 356.  doi: 10.1016/j.jmatprotec.2003.11.027.  Google Scholar

[6]

L. Davis, Handbook of Genetic Algorithms,, Van Nostrand Reinhold, (1991).   Google Scholar

[7]

K. De Jong, Proceedings of the Evolutionary Algorithms in Engineering Computer Science (EUROGEN99), chapter Evolutionary computation: Recent developments and open issues, 43-54,, University of Jyvskyl Finland, (1999).   Google Scholar

[8]

E. Fama, Market efficiency, long-term returns, and behavioral finance,, Journal of Financial Economics, 49 (1998), 283.  doi: 10.2139/ssrn.15108.  Google Scholar

[9]

P. Fourie and A. Groenwold, The particle swarm optimization algorithm in size and shape optimization,, Structural and Multidisciplinary Optimization, 23 (2002), 259.  doi: 10.1007/s00158-002-0188-0.  Google Scholar

[10]

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,, 1st edition, (1989), 07.   Google Scholar

[11]

V. Goodman and J. G. Stampfli, The Mathematics of Finance: Modeling and Hedging,, American Mathematical Society, (2001).   Google Scholar

[12]

K. Ilinski, Physics of Finance : Gauge Modelling in Non-Equilibrium Pricing,, Wiley, (2001).   Google Scholar

[13]

C. Mattheck and S. Burkhardt, A new method of structural shape optimization based on biological growth,, International Journal of Fatigue, 12 (1990), 185.  doi: 10.1016/0142-1123(90)90094-U.  Google Scholar

[14]

R. Musgrave, The Theory of Public Finance : A Study in Public Economy,, McGraw-Hill, (1959).   Google Scholar

[15]

H. S. Rosen, Public finance,, The Encyclopedia of Public Choice, (2004), 252.  doi: 10.1007/978-0-306-47828-4_21.  Google Scholar

[16]

Chen S.-H. (ed.), Genetic Algorithms and Genetic Programming in Computational Finance,, Kluwer Academic Publishers, (2002).   Google Scholar

[17]

C. Soh and J. Yang, Fuzzy controlled genetic algorithm search for shape optimization,, Journal of Computing in Civil Engineering, 10 (1996), 143.  doi: 10.1061/(ASCE)0887-3801(1996)10:2(143).  Google Scholar

[18]

C. Tiebout, A pure theory of local expenditures,, Journal of Political Economy, 64 (1956), 416.  doi: 10.1086/257839.  Google Scholar

show all references

References:
[1]

La Qualité Comptable au service d'une gestion performante des collectivités locales - Guide des bonnes pratiques Num 18, Technical report,, Académie des sciences et techniques comptables financières., ().   Google Scholar

[2]

Annexe Num 1: Plan de comptes développé des communes de 500 habitants et plus au 1ier janvier 2009, Technical report, Plan M14 de Comptabilité, French State Secretary for Finance,, (, (2009).   Google Scholar

[3]

D. Beasley, D. Bull and R. Martin, An overview of genetic algorithms. part 1, fundamentals,, University Computing, 15 (1993), 58.   Google Scholar

[4]

D. Beasley, D. Bull and R. Martin, An overview of genetic algorithms. part 2, research topics,, University Computing, 15 (1993), 170.   Google Scholar

[5]

C. Castro, C. Antònio and L. Sousa, Optimisation of shape and process parameters in metal forging using genetic algorithms,, Journal of Materials Processing Technology, 146 (2004), 356.  doi: 10.1016/j.jmatprotec.2003.11.027.  Google Scholar

[6]

L. Davis, Handbook of Genetic Algorithms,, Van Nostrand Reinhold, (1991).   Google Scholar

[7]

K. De Jong, Proceedings of the Evolutionary Algorithms in Engineering Computer Science (EUROGEN99), chapter Evolutionary computation: Recent developments and open issues, 43-54,, University of Jyvskyl Finland, (1999).   Google Scholar

[8]

E. Fama, Market efficiency, long-term returns, and behavioral finance,, Journal of Financial Economics, 49 (1998), 283.  doi: 10.2139/ssrn.15108.  Google Scholar

[9]

P. Fourie and A. Groenwold, The particle swarm optimization algorithm in size and shape optimization,, Structural and Multidisciplinary Optimization, 23 (2002), 259.  doi: 10.1007/s00158-002-0188-0.  Google Scholar

[10]

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,, 1st edition, (1989), 07.   Google Scholar

[11]

V. Goodman and J. G. Stampfli, The Mathematics of Finance: Modeling and Hedging,, American Mathematical Society, (2001).   Google Scholar

[12]

K. Ilinski, Physics of Finance : Gauge Modelling in Non-Equilibrium Pricing,, Wiley, (2001).   Google Scholar

[13]

C. Mattheck and S. Burkhardt, A new method of structural shape optimization based on biological growth,, International Journal of Fatigue, 12 (1990), 185.  doi: 10.1016/0142-1123(90)90094-U.  Google Scholar

[14]

R. Musgrave, The Theory of Public Finance : A Study in Public Economy,, McGraw-Hill, (1959).   Google Scholar

[15]

H. S. Rosen, Public finance,, The Encyclopedia of Public Choice, (2004), 252.  doi: 10.1007/978-0-306-47828-4_21.  Google Scholar

[16]

Chen S.-H. (ed.), Genetic Algorithms and Genetic Programming in Computational Finance,, Kluwer Academic Publishers, (2002).   Google Scholar

[17]

C. Soh and J. Yang, Fuzzy controlled genetic algorithm search for shape optimization,, Journal of Computing in Civil Engineering, 10 (1996), 143.  doi: 10.1061/(ASCE)0887-3801(1996)10:2(143).  Google Scholar

[18]

C. Tiebout, A pure theory of local expenditures,, Journal of Political Economy, 64 (1956), 416.  doi: 10.1086/257839.  Google Scholar

[1]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[2]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[3]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[4]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[5]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[6]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[7]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[8]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[9]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[10]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[11]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[12]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[15]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[16]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[17]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

[Back to Top]