January  2015, 11(1): 171-183. doi: 10.3934/jimo.2015.11.171

Optimization problems on the rank of the solution to left and right inverse eigenvalue problem

1. 

School of Mathematics and Statistics, Tianshui Normal University, Tianshui, Gansu 741001, China, China

2. 

School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, Gansu 730030, China

Received  January 2013 Revised  December 2013 Published  May 2014

A complex matrix $P$ is called Hermitian and $\{k+1\}$-potent if $P^{k+1}=P=P^*$ for some integer $k\geq 1$. Let $P$ and $Q$ be $n\times n$ Hermitian and $\{k+1\}$-potent matrices, we say that complex matrix $A$ is $\{P,Q,k+1\}$-reflexive (anti-reflexive) if $PAQ=A$ ($PAQ=-A$). In this paper, the solvability conditions and the general solutions of the left and right inverse eigenvalue problem for $\{P,Q,k+1\}$-reflexive and anti-reflexive matrices are derived, and the minimal and maximal rank solutions are given. Moreover, the associated optimal approximation problem is also considered. Finally, numerical example is given to illustrate the main results.
Citation: Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171
References:
[1]

A. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics, 15 (1973), 405-407. doi: 10.2307/1266998.

[2]

C. Beattie and S. Smith, Optimal matrix approximations in structural identification, J. Optim. Theory Appl., 74 (1992), 23-56. doi: 10.1007/BF00939891.

[3]

P. Brussard and P. Glaudemans, Shell Model Applications in Nuclear Spectroscopy, Elsevier, New York, 1977.

[4]

H. Chen, Generalized reflexive matrices: Special properties and applications, SIAN Matrix Anal. Appl., 19 (1998), 140-153. doi: 10.1137/S0895479895288759.

[5]

M. Chu and G. Golub, Inverse Eigenvalue Problems Theory, Algorithms, and Application, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2005. doi: 10.1093/acprof:oso/9780198566649.001.0001.

[6]

B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems, Mechanical Systems and Signal Processing, 16 (2002), 83-96. doi: 10.1006/mssp.2001.1443.

[7]

A. S. Deakin and T. M. Luke, On the inverse eigenvalue problems for matrices, J. Phys. A, 25 (1992), 635-648. doi: 10.1088/0305-4470/25/3/020.

[8]

B. DeMoor and G. Golub, The restricted singular value decomposition: Properties and applcations, SIAM J. Matrix Anal. Appl., 12 (1991), 401-425. doi: 10.1137/0612029.

[9]

A. Herrero and N. Thome, Using the GSVD and the lifting technique to find $\{P,k+1\}$-reflexive and anti-reflexive solutions of $AXB=C$. Appl. Math. Lett., 24 (2011), 1130-1141. doi: 10.1016/j.aml.2011.01.039.

[10]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of skew-centrosymmetric matrices, Appl. Math. Comput., 177 (2006), 105-110. doi: 10.1016/j.amc.2005.10.035.

[11]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of generalized centrosymmetric matrices and its optimal approximation problem, Appl. Math. Comput., 212 (2009), 481-487. doi: 10.1016/j.amc.2009.02.035.

[12]

M. Liang and L. Dai, The left and right inverse eigenvalue problem for generalized reflexive and anti-reflexive matrices, J. Comput. Appl., 234 (2010), 743-749. doi: 10.1016/j.cam.2010.01.014.

[13]

M. Liang, L. Dai and Y. Yang, The $\{P,Q, k+1\}$-reflexive solution of matrix equation $AXB= C$, J. Appl. Math. Computing, 42 (2013), 339-350. doi: 10.1007/s12190-012-0631-3.

[14]

A. Marina, H. Daniel, M. Volkeer and C. Hans, The recursive inverse eigenvalue problem, SIAM Matrix Anal. Appl., 22 (2000), 392-412. doi: 10.1137/S0895479899354044.

[15]

J. Paine, A numerical method for the inverse Sturm-Liouville problem, SIAM J. Sci. Stat. Comput., 5 (1984), 149-156. doi: 10.1137/0905011.

[16]

H. Park, M. Jeon and J. Rosen, Low dimensional representation of text data in vector space based information retrievals, Computat. Info. Retrieval, (2001), 3-23.

[17]

J. Respondek, Approximate controllability of the n-th Order infinite dimensional systems with controls delayed by the control devices, Inter. Sys. Sci., 39 (2008), 765-782. doi: 10.1080/00207720701832655.

[18]

J. Respondek, On the confluent Vandermonde matrix calculation algorithm, Appl. Math. Lett., 24 (2011), 103-106. doi: 10.1016/j.aml.2010.08.026.

[19]

J. Respondek, Numerical recipes for the high efficient inverse of the confluent, Vandermonde matrices, Appl. Math. Comput., 218 (2011), 2044-2054. doi: 10.1016/j.amc.2011.07.017.

[20]

J. Rosenthal and J. Willems, Open problems in the area of pole placement, Open Problems in Mathematical Systems and Control Theory, Springer, London, (1999), 181-191.

[21]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755. doi: 10.1007/s100120200015.

[22]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.

[23]

W. Trench, Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices, Linear Algebra Appl., 389 (2004), 23-31. doi: 10.1016/j.laa.2004.03.035.

[24]

J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Mon., 92 (1985), 711-717. doi: 10.2307/2323222.

[25]

J. Wilkinson, The Algebraic Problem, Oxford University Press, 1965.

[26]

D. Xie, X. Hu and Y. Sheng, The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations, Linear Algebra Appl., 418 (2006), 142-152. doi: 10.1016/j.laa.2006.01.027.

[27]

L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach, McGraw Hill, New York, 1963.

[28]

L. Zhang and D. Xie, A class of inverse eigenvalue problems, Math. Sci. Acta, 13 (1993), 94-99.

show all references

References:
[1]

A. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics, 15 (1973), 405-407. doi: 10.2307/1266998.

[2]

C. Beattie and S. Smith, Optimal matrix approximations in structural identification, J. Optim. Theory Appl., 74 (1992), 23-56. doi: 10.1007/BF00939891.

[3]

P. Brussard and P. Glaudemans, Shell Model Applications in Nuclear Spectroscopy, Elsevier, New York, 1977.

[4]

H. Chen, Generalized reflexive matrices: Special properties and applications, SIAN Matrix Anal. Appl., 19 (1998), 140-153. doi: 10.1137/S0895479895288759.

[5]

M. Chu and G. Golub, Inverse Eigenvalue Problems Theory, Algorithms, and Application, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2005. doi: 10.1093/acprof:oso/9780198566649.001.0001.

[6]

B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems, Mechanical Systems and Signal Processing, 16 (2002), 83-96. doi: 10.1006/mssp.2001.1443.

[7]

A. S. Deakin and T. M. Luke, On the inverse eigenvalue problems for matrices, J. Phys. A, 25 (1992), 635-648. doi: 10.1088/0305-4470/25/3/020.

[8]

B. DeMoor and G. Golub, The restricted singular value decomposition: Properties and applcations, SIAM J. Matrix Anal. Appl., 12 (1991), 401-425. doi: 10.1137/0612029.

[9]

A. Herrero and N. Thome, Using the GSVD and the lifting technique to find $\{P,k+1\}$-reflexive and anti-reflexive solutions of $AXB=C$. Appl. Math. Lett., 24 (2011), 1130-1141. doi: 10.1016/j.aml.2011.01.039.

[10]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of skew-centrosymmetric matrices, Appl. Math. Comput., 177 (2006), 105-110. doi: 10.1016/j.amc.2005.10.035.

[11]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of generalized centrosymmetric matrices and its optimal approximation problem, Appl. Math. Comput., 212 (2009), 481-487. doi: 10.1016/j.amc.2009.02.035.

[12]

M. Liang and L. Dai, The left and right inverse eigenvalue problem for generalized reflexive and anti-reflexive matrices, J. Comput. Appl., 234 (2010), 743-749. doi: 10.1016/j.cam.2010.01.014.

[13]

M. Liang, L. Dai and Y. Yang, The $\{P,Q, k+1\}$-reflexive solution of matrix equation $AXB= C$, J. Appl. Math. Computing, 42 (2013), 339-350. doi: 10.1007/s12190-012-0631-3.

[14]

A. Marina, H. Daniel, M. Volkeer and C. Hans, The recursive inverse eigenvalue problem, SIAM Matrix Anal. Appl., 22 (2000), 392-412. doi: 10.1137/S0895479899354044.

[15]

J. Paine, A numerical method for the inverse Sturm-Liouville problem, SIAM J. Sci. Stat. Comput., 5 (1984), 149-156. doi: 10.1137/0905011.

[16]

H. Park, M. Jeon and J. Rosen, Low dimensional representation of text data in vector space based information retrievals, Computat. Info. Retrieval, (2001), 3-23.

[17]

J. Respondek, Approximate controllability of the n-th Order infinite dimensional systems with controls delayed by the control devices, Inter. Sys. Sci., 39 (2008), 765-782. doi: 10.1080/00207720701832655.

[18]

J. Respondek, On the confluent Vandermonde matrix calculation algorithm, Appl. Math. Lett., 24 (2011), 103-106. doi: 10.1016/j.aml.2010.08.026.

[19]

J. Respondek, Numerical recipes for the high efficient inverse of the confluent, Vandermonde matrices, Appl. Math. Comput., 218 (2011), 2044-2054. doi: 10.1016/j.amc.2011.07.017.

[20]

J. Rosenthal and J. Willems, Open problems in the area of pole placement, Open Problems in Mathematical Systems and Control Theory, Springer, London, (1999), 181-191.

[21]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755. doi: 10.1007/s100120200015.

[22]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.

[23]

W. Trench, Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices, Linear Algebra Appl., 389 (2004), 23-31. doi: 10.1016/j.laa.2004.03.035.

[24]

J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Mon., 92 (1985), 711-717. doi: 10.2307/2323222.

[25]

J. Wilkinson, The Algebraic Problem, Oxford University Press, 1965.

[26]

D. Xie, X. Hu and Y. Sheng, The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations, Linear Algebra Appl., 418 (2006), 142-152. doi: 10.1016/j.laa.2006.01.027.

[27]

L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach, McGraw Hill, New York, 1963.

[28]

L. Zhang and D. Xie, A class of inverse eigenvalue problems, Math. Sci. Acta, 13 (1993), 94-99.

[1]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

[2]

Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691

[3]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[4]

Roberta Ghezzi, Frédéric Jean. A new class of $(H^k,1)$-rectifiable subsets of metric spaces. Communications on Pure and Applied Analysis, 2013, 12 (2) : 881-898. doi: 10.3934/cpaa.2013.12.881

[5]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial and Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[6]

Marek Galewski, Renata Wieteska. Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2535-2547. doi: 10.3934/dcdsb.2014.19.2535

[7]

Florian Bossmann, Jianwei Ma. Enhanced image approximation using shifted rank-1 reconstruction. Inverse Problems and Imaging, 2020, 14 (2) : 267-290. doi: 10.3934/ipi.2020012

[8]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[9]

Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $. Electronic Research Archive, 2020, 28 (1) : 103-125. doi: 10.3934/era.2020007

[10]

Ke Wei, Jian-Feng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems and Imaging, 2020, 14 (2) : 233-265. doi: 10.3934/ipi.2020011

[11]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[12]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial and Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[13]

Weigao Ge, Li Zhang. Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4925-4943. doi: 10.3934/dcds.2016013

[14]

Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617

[15]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021067

[16]

Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem. Journal of Industrial and Management Optimization, 2022, 18 (1) : 411-426. doi: 10.3934/jimo.2020160

[17]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[18]

Feng Rong. Non-algebraic attractors on $\mathbf{P}^k$. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 977-989. doi: 10.3934/dcds.2012.32.977

[19]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[20]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]