January  2015, 11(1): 171-183. doi: 10.3934/jimo.2015.11.171

Optimization problems on the rank of the solution to left and right inverse eigenvalue problem

1. 

School of Mathematics and Statistics, Tianshui Normal University, Tianshui, Gansu 741001, China, China

2. 

School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, Gansu 730030, China

Received  January 2013 Revised  December 2013 Published  May 2014

A complex matrix $P$ is called Hermitian and $\{k+1\}$-potent if $P^{k+1}=P=P^*$ for some integer $k\geq 1$. Let $P$ and $Q$ be $n\times n$ Hermitian and $\{k+1\}$-potent matrices, we say that complex matrix $A$ is $\{P,Q,k+1\}$-reflexive (anti-reflexive) if $PAQ=A$ ($PAQ=-A$). In this paper, the solvability conditions and the general solutions of the left and right inverse eigenvalue problem for $\{P,Q,k+1\}$-reflexive and anti-reflexive matrices are derived, and the minimal and maximal rank solutions are given. Moreover, the associated optimal approximation problem is also considered. Finally, numerical example is given to illustrate the main results.
Citation: Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171
References:
[1]

A. Andrew, Solution of equations involving centrosymmetric matrices,, Technometrics, 15 (1973), 405.  doi: 10.2307/1266998.  Google Scholar

[2]

C. Beattie and S. Smith, Optimal matrix approximations in structural identification,, J. Optim. Theory Appl., 74 (1992), 23.  doi: 10.1007/BF00939891.  Google Scholar

[3]

P. Brussard and P. Glaudemans, Shell Model Applications in Nuclear Spectroscopy,, Elsevier, (1977).   Google Scholar

[4]

H. Chen, Generalized reflexive matrices: Special properties and applications,, SIAN Matrix Anal. Appl., 19 (1998), 140.  doi: 10.1137/S0895479895288759.  Google Scholar

[5]

M. Chu and G. Golub, Inverse Eigenvalue Problems Theory, Algorithms, and Application,, Numerical Mathematics and Scientific Computation. Oxford University Press, (2005).  doi: 10.1093/acprof:oso/9780198566649.001.0001.  Google Scholar

[6]

B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems,, Mechanical Systems and Signal Processing, 16 (2002), 83.  doi: 10.1006/mssp.2001.1443.  Google Scholar

[7]

A. S. Deakin and T. M. Luke, On the inverse eigenvalue problems for matrices,, J. Phys. A, 25 (1992), 635.  doi: 10.1088/0305-4470/25/3/020.  Google Scholar

[8]

B. DeMoor and G. Golub, The restricted singular value decomposition: Properties and applcations,, SIAM J. Matrix Anal. Appl., 12 (1991), 401.  doi: 10.1137/0612029.  Google Scholar

[9]

A. Herrero and N. Thome, Using the GSVD and the lifting technique to find $\{P,k+1\}$-reflexive and anti-reflexive solutions of $AXB=C$., Appl. Math. Lett., 24 (2011), 1130.  doi: 10.1016/j.aml.2011.01.039.  Google Scholar

[10]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of skew-centrosymmetric matrices,, Appl. Math. Comput., 177 (2006), 105.  doi: 10.1016/j.amc.2005.10.035.  Google Scholar

[11]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of generalized centrosymmetric matrices and its optimal approximation problem,, Appl. Math. Comput., 212 (2009), 481.  doi: 10.1016/j.amc.2009.02.035.  Google Scholar

[12]

M. Liang and L. Dai, The left and right inverse eigenvalue problem for generalized reflexive and anti-reflexive matrices,, J. Comput. Appl., 234 (2010), 743.  doi: 10.1016/j.cam.2010.01.014.  Google Scholar

[13]

M. Liang, L. Dai and Y. Yang, The $\{P,Q, k+1\}$-reflexive solution of matrix equation $AXB= C$,, J. Appl. Math. Computing, 42 (2013), 339.  doi: 10.1007/s12190-012-0631-3.  Google Scholar

[14]

A. Marina, H. Daniel, M. Volkeer and C. Hans, The recursive inverse eigenvalue problem,, SIAM Matrix Anal. Appl., 22 (2000), 392.  doi: 10.1137/S0895479899354044.  Google Scholar

[15]

J. Paine, A numerical method for the inverse Sturm-Liouville problem,, SIAM J. Sci. Stat. Comput., 5 (1984), 149.  doi: 10.1137/0905011.  Google Scholar

[16]

H. Park, M. Jeon and J. Rosen, Low dimensional representation of text data in vector space based information retrievals,, Computat. Info. Retrieval, (2001), 3.   Google Scholar

[17]

J. Respondek, Approximate controllability of the n-th Order infinite dimensional systems with controls delayed by the control devices,, Inter. Sys. Sci., 39 (2008), 765.  doi: 10.1080/00207720701832655.  Google Scholar

[18]

J. Respondek, On the confluent Vandermonde matrix calculation algorithm,, Appl. Math. Lett., 24 (2011), 103.  doi: 10.1016/j.aml.2010.08.026.  Google Scholar

[19]

J. Respondek, Numerical recipes for the high efficient inverse of the confluent, Vandermonde matrices,, Appl. Math. Comput., 218 (2011), 2044.  doi: 10.1016/j.amc.2011.07.017.  Google Scholar

[20]

J. Rosenthal and J. Willems, Open problems in the area of pole placement,, Open Problems in Mathematical Systems and Control Theory, (1999), 181.   Google Scholar

[21]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices,, Southeast Asian Bull. Math., 25 (2002), 745.  doi: 10.1007/s100120200015.  Google Scholar

[22]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications,, New York J. Math., 9 (2003), 345.   Google Scholar

[23]

W. Trench, Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices,, Linear Algebra Appl., 389 (2004), 23.  doi: 10.1016/j.laa.2004.03.035.  Google Scholar

[24]

J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors,, Am. Math. Mon., 92 (1985), 711.  doi: 10.2307/2323222.  Google Scholar

[25]

J. Wilkinson, The Algebraic Problem,, Oxford University Press, (1965).   Google Scholar

[26]

D. Xie, X. Hu and Y. Sheng, The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations,, Linear Algebra Appl., 418 (2006), 142.  doi: 10.1016/j.laa.2006.01.027.  Google Scholar

[27]

L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach,, McGraw Hill, (1963).   Google Scholar

[28]

L. Zhang and D. Xie, A class of inverse eigenvalue problems,, Math. Sci. Acta, 13 (1993), 94.   Google Scholar

show all references

References:
[1]

A. Andrew, Solution of equations involving centrosymmetric matrices,, Technometrics, 15 (1973), 405.  doi: 10.2307/1266998.  Google Scholar

[2]

C. Beattie and S. Smith, Optimal matrix approximations in structural identification,, J. Optim. Theory Appl., 74 (1992), 23.  doi: 10.1007/BF00939891.  Google Scholar

[3]

P. Brussard and P. Glaudemans, Shell Model Applications in Nuclear Spectroscopy,, Elsevier, (1977).   Google Scholar

[4]

H. Chen, Generalized reflexive matrices: Special properties and applications,, SIAN Matrix Anal. Appl., 19 (1998), 140.  doi: 10.1137/S0895479895288759.  Google Scholar

[5]

M. Chu and G. Golub, Inverse Eigenvalue Problems Theory, Algorithms, and Application,, Numerical Mathematics and Scientific Computation. Oxford University Press, (2005).  doi: 10.1093/acprof:oso/9780198566649.001.0001.  Google Scholar

[6]

B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems,, Mechanical Systems and Signal Processing, 16 (2002), 83.  doi: 10.1006/mssp.2001.1443.  Google Scholar

[7]

A. S. Deakin and T. M. Luke, On the inverse eigenvalue problems for matrices,, J. Phys. A, 25 (1992), 635.  doi: 10.1088/0305-4470/25/3/020.  Google Scholar

[8]

B. DeMoor and G. Golub, The restricted singular value decomposition: Properties and applcations,, SIAM J. Matrix Anal. Appl., 12 (1991), 401.  doi: 10.1137/0612029.  Google Scholar

[9]

A. Herrero and N. Thome, Using the GSVD and the lifting technique to find $\{P,k+1\}$-reflexive and anti-reflexive solutions of $AXB=C$., Appl. Math. Lett., 24 (2011), 1130.  doi: 10.1016/j.aml.2011.01.039.  Google Scholar

[10]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of skew-centrosymmetric matrices,, Appl. Math. Comput., 177 (2006), 105.  doi: 10.1016/j.amc.2005.10.035.  Google Scholar

[11]

F. Li, X. Hu and L. Zhang, Left and right inverse eigenpairs problem of generalized centrosymmetric matrices and its optimal approximation problem,, Appl. Math. Comput., 212 (2009), 481.  doi: 10.1016/j.amc.2009.02.035.  Google Scholar

[12]

M. Liang and L. Dai, The left and right inverse eigenvalue problem for generalized reflexive and anti-reflexive matrices,, J. Comput. Appl., 234 (2010), 743.  doi: 10.1016/j.cam.2010.01.014.  Google Scholar

[13]

M. Liang, L. Dai and Y. Yang, The $\{P,Q, k+1\}$-reflexive solution of matrix equation $AXB= C$,, J. Appl. Math. Computing, 42 (2013), 339.  doi: 10.1007/s12190-012-0631-3.  Google Scholar

[14]

A. Marina, H. Daniel, M. Volkeer and C. Hans, The recursive inverse eigenvalue problem,, SIAM Matrix Anal. Appl., 22 (2000), 392.  doi: 10.1137/S0895479899354044.  Google Scholar

[15]

J. Paine, A numerical method for the inverse Sturm-Liouville problem,, SIAM J. Sci. Stat. Comput., 5 (1984), 149.  doi: 10.1137/0905011.  Google Scholar

[16]

H. Park, M. Jeon and J. Rosen, Low dimensional representation of text data in vector space based information retrievals,, Computat. Info. Retrieval, (2001), 3.   Google Scholar

[17]

J. Respondek, Approximate controllability of the n-th Order infinite dimensional systems with controls delayed by the control devices,, Inter. Sys. Sci., 39 (2008), 765.  doi: 10.1080/00207720701832655.  Google Scholar

[18]

J. Respondek, On the confluent Vandermonde matrix calculation algorithm,, Appl. Math. Lett., 24 (2011), 103.  doi: 10.1016/j.aml.2010.08.026.  Google Scholar

[19]

J. Respondek, Numerical recipes for the high efficient inverse of the confluent, Vandermonde matrices,, Appl. Math. Comput., 218 (2011), 2044.  doi: 10.1016/j.amc.2011.07.017.  Google Scholar

[20]

J. Rosenthal and J. Willems, Open problems in the area of pole placement,, Open Problems in Mathematical Systems and Control Theory, (1999), 181.   Google Scholar

[21]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices,, Southeast Asian Bull. Math., 25 (2002), 745.  doi: 10.1007/s100120200015.  Google Scholar

[22]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications,, New York J. Math., 9 (2003), 345.   Google Scholar

[23]

W. Trench, Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices,, Linear Algebra Appl., 389 (2004), 23.  doi: 10.1016/j.laa.2004.03.035.  Google Scholar

[24]

J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors,, Am. Math. Mon., 92 (1985), 711.  doi: 10.2307/2323222.  Google Scholar

[25]

J. Wilkinson, The Algebraic Problem,, Oxford University Press, (1965).   Google Scholar

[26]

D. Xie, X. Hu and Y. Sheng, The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations,, Linear Algebra Appl., 418 (2006), 142.  doi: 10.1016/j.laa.2006.01.027.  Google Scholar

[27]

L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach,, McGraw Hill, (1963).   Google Scholar

[28]

L. Zhang and D. Xie, A class of inverse eigenvalue problems,, Math. Sci. Acta, 13 (1993), 94.   Google Scholar

[1]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[2]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[3]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[4]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[9]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[10]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[16]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[17]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[18]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]