January  2015, 11(1): 231-240. doi: 10.3934/jimo.2015.11.231

Control augmentation design of UAVs based on deviation modification of aerodynamic focus

1. 

School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu

2. 

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China, China

Received  February 2013 Revised  January 2014 Published  May 2014

Based on the analysis of force and action points of an UAV (unmanned aerial vehicle), we propose a concept called static stability degree deviation (SSDD) factor, which is related to the focus position, and can be used to modify the data for control law design. Furthermore, a SSDD-based method is presented to avoid the flight oscillation caused by the data deviation of aerodynamic focus. By using the attitude angle difference between real fight data and simulation data as an optimization index, the identification of SSDD factor and the data reproduction of the real flight data are achieved. The identification results are then used to modify aerodynamic blowing data. Based on the modified model, the augmentation control is designed by applying the altitude angle rate feedback to improve the equivalent damping ratio and frequency; thus the iteration design of the control law is performed.
Citation: Yingjing Shi, Rui Li, Honglei Xu. Control augmentation design of UAVs based on deviation modification of aerodynamic focus. Journal of Industrial & Management Optimization, 2015, 11 (1) : 231-240. doi: 10.3934/jimo.2015.11.231
References:
[1]

Journal of Industrial and Management Optimization, 9 (2013), 885-892. doi: 10.3934/jimo.2013.9.885.  Google Scholar

[2]

Wseas Transactions on Systems, 10 (2011), 91-103. Google Scholar

[3]

Journal of Industrial and Management Optimization, 8 (2012), 765-779. doi: 10.3934/jimo.2012.8.765.  Google Scholar

[4]

Journal of Industrial and Management Optimization, 8 (2012), 271-283. doi: 10.3934/jimo.2012.8.271.  Google Scholar

[5]

IEEE Transactions on Aerospace and Electronic Systems, 36 (2000), 383-392. doi: 10.1109/7.845215.  Google Scholar

[6]

Journal of Sound and Vibration, 295 (2006), 531-552. doi: 10.1016/j.jsv.2006.01.039.  Google Scholar

[7]

Proceedings of the 8th World Congress on Intelligent Control and Automation, (2011), 711-718. Google Scholar

[8]

Proceedings 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, (2011), 1170-1175. Google Scholar

[9]

Chinese Journal of Aeronautics, 25 (2012), 361-371. Google Scholar

[10]

International Conference on Control Applications, Munich, Germany, (2006), 2138-2143. Google Scholar

[11]

International Journal of Control, Automation, and Systems, 4 (2006), 782-787. Google Scholar

[12]

Proceedings of the 17th World Congress The International Federation of Automatic Control,Seoul, Korea, (2008), 7421-7426. Google Scholar

[13]

1nd edition, The UESTC PRESS, Chengdu, 2011. Google Scholar

[14]

International Journal of Systems Science, 44 (2013), 1040-1051. doi: 10.1080/00207721.2011.652225.  Google Scholar

[15]

KSME International Journal, 17 (2003), 654-667. Google Scholar

[16]

Inverse Problems in Science and Engineering, 17 (2009), 17-34. Google Scholar

show all references

References:
[1]

Journal of Industrial and Management Optimization, 9 (2013), 885-892. doi: 10.3934/jimo.2013.9.885.  Google Scholar

[2]

Wseas Transactions on Systems, 10 (2011), 91-103. Google Scholar

[3]

Journal of Industrial and Management Optimization, 8 (2012), 765-779. doi: 10.3934/jimo.2012.8.765.  Google Scholar

[4]

Journal of Industrial and Management Optimization, 8 (2012), 271-283. doi: 10.3934/jimo.2012.8.271.  Google Scholar

[5]

IEEE Transactions on Aerospace and Electronic Systems, 36 (2000), 383-392. doi: 10.1109/7.845215.  Google Scholar

[6]

Journal of Sound and Vibration, 295 (2006), 531-552. doi: 10.1016/j.jsv.2006.01.039.  Google Scholar

[7]

Proceedings of the 8th World Congress on Intelligent Control and Automation, (2011), 711-718. Google Scholar

[8]

Proceedings 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, (2011), 1170-1175. Google Scholar

[9]

Chinese Journal of Aeronautics, 25 (2012), 361-371. Google Scholar

[10]

International Conference on Control Applications, Munich, Germany, (2006), 2138-2143. Google Scholar

[11]

International Journal of Control, Automation, and Systems, 4 (2006), 782-787. Google Scholar

[12]

Proceedings of the 17th World Congress The International Federation of Automatic Control,Seoul, Korea, (2008), 7421-7426. Google Scholar

[13]

1nd edition, The UESTC PRESS, Chengdu, 2011. Google Scholar

[14]

International Journal of Systems Science, 44 (2013), 1040-1051. doi: 10.1080/00207721.2011.652225.  Google Scholar

[15]

KSME International Journal, 17 (2003), 654-667. Google Scholar

[16]

Inverse Problems in Science and Engineering, 17 (2009), 17-34. Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[3]

Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3869-3902. doi: 10.3934/dcds.2021020

[4]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[5]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[6]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[7]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[8]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[9]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[12]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[13]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[14]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[15]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[16]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[20]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]