January  2015, 11(1): 241-264. doi: 10.3934/jimo.2015.11.241

A finite difference method for pricing European and American options under a geometric Lévy process

1. 

School of Mathematics & Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received  September 2013 Revised  January 2014 Published  May 2014

In this paper we develop a numerical approach to a fractional-order differential Linear Complementarity Problem (LCP) arising in pricing European and American options under a geometric Lévy process. The LCP is first approximated by a nonlinear penalty fractional Black-Scholes (fBS) equation. We then propose a finite difference scheme for the penalty fBS equation. We show that both the continuous and the discretized fBS equations are uniquely solvable and establish the convergence of the numerical solution to the viscosity solution of the penalty fBS equation by proving the consistency, stability and monotonicity of the numerical scheme. We also show that the discretization has the 2nd-order truncation error in both the spatial and time mesh sizes. Numerical results are presented to demonstrate the accuracy and usefulness of the numerical method for pricing both European and American options under the geometric Lévy process.
Citation: Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241
References:
[1]

L. Angermann and S. Wang, Convergence of a fitted finite volume method for the penalized BlackScholes equation governing European and American Option pricing,, Numerische Mathematik, 106 (2007), 1.  doi: 10.1007/s00211-006-0057-7.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637.   Google Scholar

[3]

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory,, Numerical methods in finance, (1997), 1.   Google Scholar

[4]

S. I. Boyarchenko and S. Levendorskii, Non-Gaussian Merton-Black-Scholes Theory,, World Scientific Singapore, (2002).  doi: 10.1142/9789812777485.  Google Scholar

[5]

P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation,, The Journal of Business, 75 (2002), 305.  doi: 10.1086/338705.  Google Scholar

[6]

A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps,, Physica A: Statistical Mechanics and its Applications, 374 (2007), 749.  doi: 10.1016/j.physa.2006.08.071.  Google Scholar

[7]

C. M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion,, Journal of Computational Physics, 227 (2007), 886.  doi: 10.1016/j.jcp.2007.05.012.  Google Scholar

[8]

M. Chen and C. Huang, A power penalty method for the general traffic assignment problem with elastic demand,, Journal of Industrial and Management Optimization, 10 (2014), 1019.  doi: 10.3934/jimo.2014.10.1019.  Google Scholar

[9]

W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation,, Computers and Mathematics with Applications, 67 (2014), 77.  doi: 10.1016/j.camwa.2013.10.007.  Google Scholar

[10]

R. Cont and P. Tankov, Financial Modelling With Jump Processes,, Chapman & Hall, (2004).   Google Scholar

[11]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models,, SIAM Journal on Numerical Analysis, 43 (2005), 1596.  doi: 10.1137/S0036142903436186.  Google Scholar

[12]

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation,, Numerical Methods for Partial Differential Equations, 22 (2006), 558.  doi: 10.1002/num.20112.  Google Scholar

[13]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem,, Operations Research Letters, 38 (2010), 72.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[14]

C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem,, Nonlinear Analysis, 75 (2012), 588.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[15]

D. C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation,, Applied Mathematics and Computation, 219 (2013), 8818.  doi: 10.1016/j.amc.2012.12.077.  Google Scholar

[16]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279.  doi: 10.1007/s10957-009-9559-7.  Google Scholar

[17]

W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme,, Journal of Industrial and Management Optimization, 9 (2013), 365.  doi: 10.3934/jimo.2013.9.365.  Google Scholar

[18]

V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order,, Journal of Computational Physics, 192 (2003), 406.  doi: 10.1016/j.jcp.2003.07.008.  Google Scholar

[19]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication. John Wiley & Sons, (1993).   Google Scholar

[20]

K. B. Oldham and J. Spanier, The fractional calculus,, Theory and applications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, 111 (1974), 76.   Google Scholar

[21]

C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation,, Journal of Computational Physics, 213 (2006), 205.  doi: 10.1016/j.jcp.2005.08.008.  Google Scholar

[22]

C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation,, Journal of Computational Physics, 220 (2007), 813.  doi: 10.1016/j.jcp.2006.05.030.  Google Scholar

[23]

S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing,, IMA Journal of Numerical Analysis, 24 (2004), 699.  doi: 10.1093/imanum/24.4.699.  Google Scholar

[24]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[25]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems,, Operations Research Letters, 36 (2008), 211.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[26]

S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations,, Journal of Computational Physics, 216 (2006), 264.  doi: 10.1016/j.jcp.2005.12.006.  Google Scholar

[27]

P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation., Oxford Financial Press, (1993).   Google Scholar

[28]

K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option,, Journal of Industrial and Management Optimization, 7 (2011), 435.  doi: 10.3934/jimo.2011.7.435.  Google Scholar

[29]

K. Zhang and S. Wang, Pricing American bond options using a penalty method,, Automatica, 48 (2012), 472.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[30]

R. Zvan, P. A. Forsyth P. A. and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, Comput. Appl. Math., 91 (1998), 199.  doi: 10.1016/S0377-0427(98)00037-5.  Google Scholar

show all references

References:
[1]

L. Angermann and S. Wang, Convergence of a fitted finite volume method for the penalized BlackScholes equation governing European and American Option pricing,, Numerische Mathematik, 106 (2007), 1.  doi: 10.1007/s00211-006-0057-7.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637.   Google Scholar

[3]

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory,, Numerical methods in finance, (1997), 1.   Google Scholar

[4]

S. I. Boyarchenko and S. Levendorskii, Non-Gaussian Merton-Black-Scholes Theory,, World Scientific Singapore, (2002).  doi: 10.1142/9789812777485.  Google Scholar

[5]

P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation,, The Journal of Business, 75 (2002), 305.  doi: 10.1086/338705.  Google Scholar

[6]

A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps,, Physica A: Statistical Mechanics and its Applications, 374 (2007), 749.  doi: 10.1016/j.physa.2006.08.071.  Google Scholar

[7]

C. M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion,, Journal of Computational Physics, 227 (2007), 886.  doi: 10.1016/j.jcp.2007.05.012.  Google Scholar

[8]

M. Chen and C. Huang, A power penalty method for the general traffic assignment problem with elastic demand,, Journal of Industrial and Management Optimization, 10 (2014), 1019.  doi: 10.3934/jimo.2014.10.1019.  Google Scholar

[9]

W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation,, Computers and Mathematics with Applications, 67 (2014), 77.  doi: 10.1016/j.camwa.2013.10.007.  Google Scholar

[10]

R. Cont and P. Tankov, Financial Modelling With Jump Processes,, Chapman & Hall, (2004).   Google Scholar

[11]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models,, SIAM Journal on Numerical Analysis, 43 (2005), 1596.  doi: 10.1137/S0036142903436186.  Google Scholar

[12]

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation,, Numerical Methods for Partial Differential Equations, 22 (2006), 558.  doi: 10.1002/num.20112.  Google Scholar

[13]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem,, Operations Research Letters, 38 (2010), 72.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[14]

C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem,, Nonlinear Analysis, 75 (2012), 588.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[15]

D. C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation,, Applied Mathematics and Computation, 219 (2013), 8818.  doi: 10.1016/j.amc.2012.12.077.  Google Scholar

[16]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279.  doi: 10.1007/s10957-009-9559-7.  Google Scholar

[17]

W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme,, Journal of Industrial and Management Optimization, 9 (2013), 365.  doi: 10.3934/jimo.2013.9.365.  Google Scholar

[18]

V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order,, Journal of Computational Physics, 192 (2003), 406.  doi: 10.1016/j.jcp.2003.07.008.  Google Scholar

[19]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication. John Wiley & Sons, (1993).   Google Scholar

[20]

K. B. Oldham and J. Spanier, The fractional calculus,, Theory and applications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, 111 (1974), 76.   Google Scholar

[21]

C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation,, Journal of Computational Physics, 213 (2006), 205.  doi: 10.1016/j.jcp.2005.08.008.  Google Scholar

[22]

C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation,, Journal of Computational Physics, 220 (2007), 813.  doi: 10.1016/j.jcp.2006.05.030.  Google Scholar

[23]

S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing,, IMA Journal of Numerical Analysis, 24 (2004), 699.  doi: 10.1093/imanum/24.4.699.  Google Scholar

[24]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[25]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems,, Operations Research Letters, 36 (2008), 211.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[26]

S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations,, Journal of Computational Physics, 216 (2006), 264.  doi: 10.1016/j.jcp.2005.12.006.  Google Scholar

[27]

P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation., Oxford Financial Press, (1993).   Google Scholar

[28]

K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option,, Journal of Industrial and Management Optimization, 7 (2011), 435.  doi: 10.3934/jimo.2011.7.435.  Google Scholar

[29]

K. Zhang and S. Wang, Pricing American bond options using a penalty method,, Automatica, 48 (2012), 472.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[30]

R. Zvan, P. A. Forsyth P. A. and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, Comput. Appl. Math., 91 (1998), 199.  doi: 10.1016/S0377-0427(98)00037-5.  Google Scholar

[1]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[2]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[3]

Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829

[4]

Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435

[5]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

[6]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[7]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[8]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[9]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[10]

Junkee Jeon, Jehan Oh. (1+2)-dimensional Black-Scholes equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 699-714. doi: 10.3934/cpaa.2020032

[11]

Rehana Naz, Imran Naeem. Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020122

[12]

Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241

[13]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[14]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[15]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[16]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[17]

Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial & Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365

[18]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020102

[19]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[20]

Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]