• Previous Article
    An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management
  • JIMO Home
  • This Issue
  • Next Article
    A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle
January  2015, 11(1): 27-40. doi: 10.3934/jimo.2015.11.27

Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance

1. 

School of Mathematics, Shandong University, Jinan 250100, China, China

Received  January 2013 Revised  November 2013 Published  May 2014

This paper is concerned with a maximum principle for a new class of non-zero sum stochastic differential games. Compared with the existing literature, the game systems in this paper are forward-backward systems in which the control variables consist of two components: the continuous controls and the impulse controls. Necessary optimality conditions and sufficient optimality conditions in the form of maximum principle are obtained respectively for open-loop Nash equilibrium point of the foregoing games. A fund management problem is used to shed light on the application of the theoretical results, and the optimal investment portfolio and optimal impulse consumption strategy are obtained explicitly.
Citation: Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27
References:
[1]

T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information,, Journal of Optimization Theory and Applications, 139 (2008), 463.  doi: 10.1007/s10957-008-9398-y.  Google Scholar

[2]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,, Mathematics in Science and Engineering, (1982).   Google Scholar

[3]

A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control,, ser. Lecture Notes in Mathematics, (1982).   Google Scholar

[4]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.  doi: 10.1137/S0363012992240722.  Google Scholar

[5]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves,, Math. Finance, 10 (2000), 141.  doi: 10.1111/1467-9965.00086.  Google Scholar

[6]

M. H. A. Davis and A. Norman, Portfolio selection with transaction costs,, Math. Oper. Res., 15 (1990), 676.  doi: 10.1287/moor.15.4.676.  Google Scholar

[7]

D. Duffie and L. Epstein, Stochastic differential utility,, Econometrica, 60 (1992), 353.  doi: 10.2307/2951600.  Google Scholar

[8]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Math. Finance, 7 (1997), 1.  doi: 10.1111/1467-9965.00022.  Google Scholar

[9]

S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations,, Stochastic Anal. Appl., 17 (1999), 117.  doi: 10.1080/07362999908809591.  Google Scholar

[10]

E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications,, J. Math. Anal. Appl., 386 (2012), 412.  doi: 10.1016/j.jmaa.2011.08.009.  Google Scholar

[11]

R. Isaacs, Differential Games,, Parts 1-4. The RAND Corporation, (): 1.   Google Scholar

[12]

M. Jeanblanc-Pique, Impulse control method and exchange rate,, Math. Finance, 3 (1993), 161.  doi: 10.1111/j.1467-9965.1993.tb00085.x.  Google Scholar

[13]

R. Korn, Some appliations of impulse control in mathematical finance,, Math. Meth. Oper. Res., 50 (1999), 493.  doi: 10.1007/s001860050083.  Google Scholar

[14]

A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility,, IEEE Trans. Autom. Control, 46 (2001), 563.  doi: 10.1109/9.917658.  Google Scholar

[15]

B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems,, Kluwer Academic/Plenum Publishers, (2003).  doi: 10.1007/978-1-4615-0095-7.  Google Scholar

[16]

B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs,, SIAM J. Control Optim., 40 (2002), 1765.  doi: 10.1137/S0363012900376013.  Google Scholar

[17]

L. Pan and J. Yong, A differential game with multi-level of hierarchy,, J. Math. Anal. Appl., 161 (1991), 522.  doi: 10.1016/0022-247X(91)90348-4.  Google Scholar

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Syst. Control Lett., 14 (1990), 55.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[19]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[20]

S. Peng, Backward stochastic differential equations and applications to optimal control,, Appl. Math. Optim., 27 (1993), 125.  doi: 10.1007/BF01195978.  Google Scholar

[21]

G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information,, IEEE Trans. Autom. Control, 54 (2009), 1230.  doi: 10.1109/TAC.2009.2019794.  Google Scholar

[22]

G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications,, IEEE Trans. Autom. Control, 55 (2010), 1742.  doi: 10.1109/TAC.2010.2048052.  Google Scholar

[23]

G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications,, Automatica, 48 (2012), 342.  doi: 10.1016/j.automatica.2011.11.010.  Google Scholar

[24]

Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems,, Syst. Sci. Math. Sci., 11 (1998), 249.   Google Scholar

[25]

W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system,, Journal of the Australian Math. Society B, 37 (1995), 172.  doi: 10.1017/S0334270000007645.  Google Scholar

[26]

D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games,, Springer Series in Operations Research and Financial Engineering. Springer, (2006).   Google Scholar

[27]

J. Yong, A leader-follower stochastic linear quadratic differential game,, SIAM J. Control Optim., 41 (2002), 1015.  doi: 10.1137/S0363012901391925.  Google Scholar

show all references

References:
[1]

T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information,, Journal of Optimization Theory and Applications, 139 (2008), 463.  doi: 10.1007/s10957-008-9398-y.  Google Scholar

[2]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,, Mathematics in Science and Engineering, (1982).   Google Scholar

[3]

A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control,, ser. Lecture Notes in Mathematics, (1982).   Google Scholar

[4]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.  doi: 10.1137/S0363012992240722.  Google Scholar

[5]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves,, Math. Finance, 10 (2000), 141.  doi: 10.1111/1467-9965.00086.  Google Scholar

[6]

M. H. A. Davis and A. Norman, Portfolio selection with transaction costs,, Math. Oper. Res., 15 (1990), 676.  doi: 10.1287/moor.15.4.676.  Google Scholar

[7]

D. Duffie and L. Epstein, Stochastic differential utility,, Econometrica, 60 (1992), 353.  doi: 10.2307/2951600.  Google Scholar

[8]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Math. Finance, 7 (1997), 1.  doi: 10.1111/1467-9965.00022.  Google Scholar

[9]

S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations,, Stochastic Anal. Appl., 17 (1999), 117.  doi: 10.1080/07362999908809591.  Google Scholar

[10]

E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications,, J. Math. Anal. Appl., 386 (2012), 412.  doi: 10.1016/j.jmaa.2011.08.009.  Google Scholar

[11]

R. Isaacs, Differential Games,, Parts 1-4. The RAND Corporation, (): 1.   Google Scholar

[12]

M. Jeanblanc-Pique, Impulse control method and exchange rate,, Math. Finance, 3 (1993), 161.  doi: 10.1111/j.1467-9965.1993.tb00085.x.  Google Scholar

[13]

R. Korn, Some appliations of impulse control in mathematical finance,, Math. Meth. Oper. Res., 50 (1999), 493.  doi: 10.1007/s001860050083.  Google Scholar

[14]

A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility,, IEEE Trans. Autom. Control, 46 (2001), 563.  doi: 10.1109/9.917658.  Google Scholar

[15]

B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems,, Kluwer Academic/Plenum Publishers, (2003).  doi: 10.1007/978-1-4615-0095-7.  Google Scholar

[16]

B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs,, SIAM J. Control Optim., 40 (2002), 1765.  doi: 10.1137/S0363012900376013.  Google Scholar

[17]

L. Pan and J. Yong, A differential game with multi-level of hierarchy,, J. Math. Anal. Appl., 161 (1991), 522.  doi: 10.1016/0022-247X(91)90348-4.  Google Scholar

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Syst. Control Lett., 14 (1990), 55.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[19]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[20]

S. Peng, Backward stochastic differential equations and applications to optimal control,, Appl. Math. Optim., 27 (1993), 125.  doi: 10.1007/BF01195978.  Google Scholar

[21]

G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information,, IEEE Trans. Autom. Control, 54 (2009), 1230.  doi: 10.1109/TAC.2009.2019794.  Google Scholar

[22]

G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications,, IEEE Trans. Autom. Control, 55 (2010), 1742.  doi: 10.1109/TAC.2010.2048052.  Google Scholar

[23]

G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications,, Automatica, 48 (2012), 342.  doi: 10.1016/j.automatica.2011.11.010.  Google Scholar

[24]

Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems,, Syst. Sci. Math. Sci., 11 (1998), 249.   Google Scholar

[25]

W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system,, Journal of the Australian Math. Society B, 37 (1995), 172.  doi: 10.1017/S0334270000007645.  Google Scholar

[26]

D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games,, Springer Series in Operations Research and Financial Engineering. Springer, (2006).   Google Scholar

[27]

J. Yong, A leader-follower stochastic linear quadratic differential game,, SIAM J. Control Optim., 41 (2002), 1015.  doi: 10.1137/S0363012901391925.  Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]