Citation: |
[1] |
I. Bongartz, A. R. Conn, N. I. Gould and P. L. Toint, CUTE: Constrained and unconstrained testing environment, Transactions on Mathematical Software (ACM), 21 (1995), 123-160.doi: 10.1145/200979.201043. |
[2] |
L. F. Chen, Y. L. Wang and G. P. Guo, A feasible active set QP-free method for nonlinear programming, SIAM J. Optimiz., 17 (2006), 401-429.doi: 10.1137/040605904. |
[3] |
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.doi: 10.1007/s101070100263. |
[4] |
D. Z. Du, A gradient projection algorithm for nonlinear constraints, Acta Mathematicae Applicatae Sinica, 8 (1985), 7-16. |
[5] |
F. Facchinei, A. Fischer and C. Kanzow, On the accurate identification of active constraints, SIAM J. Optimiz., 9 (1999), 14-32.doi: 10.1137/S1052623496305882. |
[6] |
Z. Y. Gao, G. P. He and F. Wu, Sequential system of linear equations algorithm for nonlinear optimization problems with general constraints, J. Optimiz. Theory App., 95 (1997), 371-397.doi: 10.1023/A:1022639306130. |
[7] |
W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 1981.doi: 10.1007/BF00934594. |
[8] |
J. B. Jian, Fast Algorithms for Smooth Constrained Optimization-Theoretical Analysis and Numerical Experiments, $1^{st}$ edition, Science Press, Beijing, 2010. |
[9] |
J. B. Jian, Strong combined Phase I-Phase II methods of sub-feasible directions, Math. Econ. (A Chinese Journal), 12 (1995), 64-70. |
[10] |
J. B. Jian, Y. H. Chen and C. H. Guo, A strongly convergent method of quasi-strongly sub-feasible directions for constrained optimization, Pacific J. Optim., 7 (2011), 339-351. |
[11] |
J. B. Jian, W. X. Cheng and X. Y. Ke, Finitely convergent $\varepsilon$-generalized projection algorithm for nonlinear systems, J. Math. Anal. Appl., 332 (2007), 1446-1459.doi: 10.1016/j.jmaa.2006.11.020. |
[12] |
J. B. Jian, G. D. Ma and C. H. Guo, A new $\varepsilon$-generalized projection method of strongly sub-feasible directions for inequality constrained optimization, J. Systems Sci. Comp., 24 (2011), 604-618.doi: 10.1007/s11424-011-8105-5. |
[13] |
J. B. Jian and K. C. Zhang, Subfeasible direction method with strong convergence for inequality constrained optimization, J. Xi'an Jiaotong Univ. (A Chinese Journal), 33 (1999), 88-91,103. |
[14] |
J. B. Jian, H. Y. Zheng, C. M. Tang and Q. J. Hu, A new superlinearly convergent norm relaxed method of strongly sub-feasible direction for inequality constrained optimization, Appl. Math. Compu., 182 (2006), 955-976.doi: 10.1016/j.amc.2006.04.050. |
[15] |
D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), 503-528.doi: 10.1007/BF01589116. |
[16] |
G. D. Ma and J. B. Jian, An $\varepsilon$-generalized gradient projection method for nonlinear minimax problems, Nonlinear Dyn., 75 (2014), 693-700. |
[17] |
Z. Q. Meng, Q. Y. Hu and C. Y. Dang, A penalty function algorithm with objective parameters for nonlinear mathematical programming, J. Ind. Manag. Optim., 5 (2009), 568-601.doi: 10.3934/jimo.2009.5.585. |
[18] |
H. Q. Pan, A Strong Sub-Feasible Primal-Dual Interior Point Algorithm for Nonlinear Inequality Constrained Optimization, Master's thesis, Guangxi University in Nanning, China, 2007. |
[19] |
E. R. Panier, A. L. Tits and J. N. Herskovits, A QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization, SIAM J. Control Optim., 26 (1988), 788-811.doi: 10.1137/0326046. |
[20] |
H. D. Qi and L. Q. Qi, A new QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization, SIAM J. Control Optim., 11 (2000), 113-132.doi: 10.1137/S1052623499353935. |
[21] |
C. G. Shen, W. J. Xue and D. G. Pu, An infeasible nonmonotone SSLE algorithm for nonlinear programming, Math. Method Oper. Res., 71 (2010), 103-124.doi: 10.1007/s00186-009-0287-4. |
[22] |
Y. L. Wang, L. F. Chen and G. P. He, Sequential system of linear equations method for general constrained optimization without strict complementarity, J. Comput. Appl. Math., 182 (2005), 447-471.doi: 10.1016/j.cam.2004.12.023. |
[23] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, J. Ind. Manag. Optim., 6 (2010), 895-910.doi: 10.3934/jimo.2010.6.895. |