January  2015, 11(1): 329-343. doi: 10.3934/jimo.2015.11.329

Second order sufficient optimality conditions for hybrid control problems with state jump

1. 

School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China, China

2. 

Business School, University of Shanghai for Science and Technology, Shanghai, 200093

Received  May 2013 Revised  February 2014 Published  May 2014

In this paper, an optimal control problem for a class of hybrid systems is considered. By introducing a new time variable and transforming the hybrid optimal control problem into an equivalent problem, second order sufficient optimality conditions for this hybrid problem are derived. It is shown that sufficient optimality conditions can be verified by checking the Legendre-Clebsch condition and solving some Riccati equations with certain boundary and jump conditions. An example is given to show the effectiveness of the main results.
Citation: Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329
References:
[1]

S. A. Attia, V. Azhmyakov and J. Raisch, On an optimization problem for a class of impulsive hybrid systems,, Discrete Event Dynamic Systems, 20 (2010), 215.  doi: 10.1007/s10626-009-0068-5.  Google Scholar

[2]

D. Augustin and H. Maurer, Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems,, Control and Cybernetics, 29 (2000), 11.   Google Scholar

[3]

A. S. Bortakovskii, Sufficient optimality conditions for continuous-discrete systems with multiple instantaneous switchings of the discrete part,, Journal of Computer and Systems Sciences International, 51 (2012), 183.  doi: 10.1134/S1064230712020049.  Google Scholar

[4]

A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle,, Systems $&$ Control Letters, 57 (2008), 964.  doi: 10.1016/j.sysconle.2008.05.006.  Google Scholar

[5]

M. Egerstedt, Y. Wardi and H. Axelsson, Transition-time optimization for switched-mode dynamical systems,, IEEE Transactions on Automatic Control, 51 (2006), 110.  doi: 10.1109/TAC.2005.861711.  Google Scholar

[6]

M. Garavello and B. Piccoli, Hybrid necessary principle,, SIAM Journal on Control and Optimization, 43 (2005), 1867.  doi: 10.1137/S0363012903416219.  Google Scholar

[7]

C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.  doi: 10.3934/jimo.2012.8.591.  Google Scholar

[8]

M. Kamgarpour and C. Tomlin, On optimal control of non-autonomousswitched systems with a fixed mode sequence,, Automatica, 48 (2012), 1177.  doi: 10.1016/j.automatica.2012.03.019.  Google Scholar

[9]

R. Li, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems,, Mathematical and Computer Modelling, 43 (2006), 1393.  doi: 10.1016/j.mcm.2005.08.012.  Google Scholar

[10]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59.   Google Scholar

[11]

C. Y. Liu, Z. H. Guan, E. M. Feng and H. C. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch fermentation,, Journal of Industrial and Management Optimization, 5 (2009), 835.   Google Scholar

[12]

R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250.  doi: 10.1016/j.automatica.2009.05.029.  Google Scholar

[13]

S. F. Maharramov, Necessary optimality conditions for switching control problems,, Journal of Industrial and Management Optimization, 6 (2010), 47.  doi: 10.3934/jimo.2010.6.47.  Google Scholar

[14]

S. F. Maharramov, Optimality condition of a nonsmooth switching control system,, Automatic Control and Computer Sciences, 42 (2008), 94.  doi: 10.3103/S0146411608020077.  Google Scholar

[15]

K. Malanowski, H. Maurer and S. Pickenhain, Second-order sufficient conditions for state-constrained optimal control problems,, Journal of Optimization Theory and Applications, 123 (2004), 595.  doi: 10.1007/s10957-004-5725-0.  Google Scholar

[16]

H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal control,, Mathematical Programming Study, 14 (1981), 163.   Google Scholar

[17]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach,, SIAM Journal on Control and Optimization, 41 (2002), 380.  doi: 10.1137/S0363012900377419.  Google Scholar

[18]

H. Maurer and S. Pickenhain, Second-order sufficient conditions for control problems with mixed control-state constrains,, Journal of Optimization Theory and Applications, 86 (1995), 649.  doi: 10.1007/BF02192163.  Google Scholar

[19]

H. J. Oberle and R. Rosendahl, Numerical computation of a singular-state subarc in an economic optimal control model,, Optimal Control Applications and Methods, 27 (2006), 211.  doi: 10.1002/oca.775.  Google Scholar

[20]

N. P. Osmolovskii and H. Maurer, Second-order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach,, in IFIP Conference on System Modeling and optimization, 312 (2009), 411.  doi: 10.1007/978-3-642-04802-9_24.  Google Scholar

[21]

R. Rosendahl, Sufficient Optimality Conditions for Nonsmooth Optimal Control Problems,, Ph.D thesis, (2009).   Google Scholar

[22]

M. Rungger and O. Stursberg, A numerical method for hybrid optimal control based on dynamic programming,, Nonlinear Analysis: Hybrid Systems, 5 (2011), 254.  doi: 10.1016/j.nahs.2010.09.002.  Google Scholar

[23]

M. S. Shaikh and P. E. Caines, On the hybird optimal control problem: Theory and algorithms,, IEEE Transactions on Automatic Control, 52 (2007), 1587.  doi: 10.1109/TAC.2007.904451.  Google Scholar

[24]

H. J. Sussman, A maximum principle for hybrid optimization,, in Proceedings of IEEE Conference on Decision and Control, (1999), 425.   Google Scholar

[25]

X. P. Xu and J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants,, IEEE Transactions on Automatic Control, 49 (2004), 2.  doi: 10.1109/TAC.2003.821417.  Google Scholar

[26]

V. Zeidan, The riccati equation for optimal control problems with mixed state-control constraints: necessary and sufficiency,, SIAM Journal on Control and Optimization, 32 (1994), 1297.  doi: 10.1137/S0363012992233640.  Google Scholar

show all references

References:
[1]

S. A. Attia, V. Azhmyakov and J. Raisch, On an optimization problem for a class of impulsive hybrid systems,, Discrete Event Dynamic Systems, 20 (2010), 215.  doi: 10.1007/s10626-009-0068-5.  Google Scholar

[2]

D. Augustin and H. Maurer, Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems,, Control and Cybernetics, 29 (2000), 11.   Google Scholar

[3]

A. S. Bortakovskii, Sufficient optimality conditions for continuous-discrete systems with multiple instantaneous switchings of the discrete part,, Journal of Computer and Systems Sciences International, 51 (2012), 183.  doi: 10.1134/S1064230712020049.  Google Scholar

[4]

A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle,, Systems $&$ Control Letters, 57 (2008), 964.  doi: 10.1016/j.sysconle.2008.05.006.  Google Scholar

[5]

M. Egerstedt, Y. Wardi and H. Axelsson, Transition-time optimization for switched-mode dynamical systems,, IEEE Transactions on Automatic Control, 51 (2006), 110.  doi: 10.1109/TAC.2005.861711.  Google Scholar

[6]

M. Garavello and B. Piccoli, Hybrid necessary principle,, SIAM Journal on Control and Optimization, 43 (2005), 1867.  doi: 10.1137/S0363012903416219.  Google Scholar

[7]

C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.  doi: 10.3934/jimo.2012.8.591.  Google Scholar

[8]

M. Kamgarpour and C. Tomlin, On optimal control of non-autonomousswitched systems with a fixed mode sequence,, Automatica, 48 (2012), 1177.  doi: 10.1016/j.automatica.2012.03.019.  Google Scholar

[9]

R. Li, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems,, Mathematical and Computer Modelling, 43 (2006), 1393.  doi: 10.1016/j.mcm.2005.08.012.  Google Scholar

[10]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59.   Google Scholar

[11]

C. Y. Liu, Z. H. Guan, E. M. Feng and H. C. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch fermentation,, Journal of Industrial and Management Optimization, 5 (2009), 835.   Google Scholar

[12]

R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250.  doi: 10.1016/j.automatica.2009.05.029.  Google Scholar

[13]

S. F. Maharramov, Necessary optimality conditions for switching control problems,, Journal of Industrial and Management Optimization, 6 (2010), 47.  doi: 10.3934/jimo.2010.6.47.  Google Scholar

[14]

S. F. Maharramov, Optimality condition of a nonsmooth switching control system,, Automatic Control and Computer Sciences, 42 (2008), 94.  doi: 10.3103/S0146411608020077.  Google Scholar

[15]

K. Malanowski, H. Maurer and S. Pickenhain, Second-order sufficient conditions for state-constrained optimal control problems,, Journal of Optimization Theory and Applications, 123 (2004), 595.  doi: 10.1007/s10957-004-5725-0.  Google Scholar

[16]

H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal control,, Mathematical Programming Study, 14 (1981), 163.   Google Scholar

[17]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach,, SIAM Journal on Control and Optimization, 41 (2002), 380.  doi: 10.1137/S0363012900377419.  Google Scholar

[18]

H. Maurer and S. Pickenhain, Second-order sufficient conditions for control problems with mixed control-state constrains,, Journal of Optimization Theory and Applications, 86 (1995), 649.  doi: 10.1007/BF02192163.  Google Scholar

[19]

H. J. Oberle and R. Rosendahl, Numerical computation of a singular-state subarc in an economic optimal control model,, Optimal Control Applications and Methods, 27 (2006), 211.  doi: 10.1002/oca.775.  Google Scholar

[20]

N. P. Osmolovskii and H. Maurer, Second-order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach,, in IFIP Conference on System Modeling and optimization, 312 (2009), 411.  doi: 10.1007/978-3-642-04802-9_24.  Google Scholar

[21]

R. Rosendahl, Sufficient Optimality Conditions for Nonsmooth Optimal Control Problems,, Ph.D thesis, (2009).   Google Scholar

[22]

M. Rungger and O. Stursberg, A numerical method for hybrid optimal control based on dynamic programming,, Nonlinear Analysis: Hybrid Systems, 5 (2011), 254.  doi: 10.1016/j.nahs.2010.09.002.  Google Scholar

[23]

M. S. Shaikh and P. E. Caines, On the hybird optimal control problem: Theory and algorithms,, IEEE Transactions on Automatic Control, 52 (2007), 1587.  doi: 10.1109/TAC.2007.904451.  Google Scholar

[24]

H. J. Sussman, A maximum principle for hybrid optimization,, in Proceedings of IEEE Conference on Decision and Control, (1999), 425.   Google Scholar

[25]

X. P. Xu and J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants,, IEEE Transactions on Automatic Control, 49 (2004), 2.  doi: 10.1109/TAC.2003.821417.  Google Scholar

[26]

V. Zeidan, The riccati equation for optimal control problems with mixed state-control constraints: necessary and sufficiency,, SIAM Journal on Control and Optimization, 32 (1994), 1297.  doi: 10.1137/S0363012992233640.  Google Scholar

[1]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[2]

Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 55-70. doi: 10.3934/jimo.2018140

[3]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[4]

A. C. Eberhard, C.E.M. Pearce. A sufficient optimality condition for nonregular problems via a nonlinear Lagrangian. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 301-331. doi: 10.3934/naco.2012.2.301

[5]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[6]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[7]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[8]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[9]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[10]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[11]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[12]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

[13]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[14]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[15]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[16]

Salvatore Rionero. On the nonlinear stability of ternary porous media via only one necessary and sufficient algebraic condition. Evolution Equations & Control Theory, 2014, 3 (3) : 525-539. doi: 10.3934/eect.2014.3.525

[17]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[18]

J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431

[19]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[20]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]