April  2015, 11(2): 345-364. doi: 10.3934/jimo.2015.11.345

A new auxiliary function method for systems of nonlinear equations

1. 

School of Mathematics, Chongqing Normal University, Chongqing 401331, China, China, China

2. 

Department of Mathematics, Shanghai University, Shanghai 200444

Received  November 2013 Revised  May 2014 Published  September 2014

In this paper, we present a new global optimization method to solve nonlinear systems of equations. We reformulate given system of nonlinear equations as a global optimization problem and then give a new auxiliary function method to solve the reformulated global optimization problem. The new auxiliary function proposed in this paper can be a filled function, a quasi-filled function or a strict filled function with appropriately chosen parameters. Several numerical examples are presented to illustrate the efficiency of the present approach.
Citation: Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345
References:
[1]

S. C. Billups and L. T. Watson, A probability-one homotopy algorithm for nonsmooth equations and mixed complementarity problems,, SIAM Journal on Optimization, 12 (2002), 606.  doi: 10.1137/S105262340037758X.  Google Scholar

[2]

X. Chen, L. Qi and Y. F. Yang, Lagrangian globalization methods for nonlinear complementarity problem,, Journal of Optimization Theory and Applications, 112 (2002), 77.  doi: 10.1023/A:1013092412197.  Google Scholar

[3]

B. Cetin, J. Barhen and J. Burdick, Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization,, J. Optim. Theory Appl., 77 (1993), 97.  doi: 10.1007/BF00940781.  Google Scholar

[4]

A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods,, SIAM, (2000).  doi: 10.1137/1.9780898719857.  Google Scholar

[5]

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,, SIAM, (1996).  doi: 10.1137/1.9781611971200.  Google Scholar

[6]

C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, Handbook of Test Problems in Local and Global Optimization,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-1-4757-3040-1.  Google Scholar

[7]

R. Ge, A filled function method for finding a global minimizer of a function of several variables,, Mathematical Programming, 46 (1990), 191.  doi: 10.1007/BF01585737.  Google Scholar

[8]

R. P. Ge and Y. Qin, A class of filled functions for finding global minimizers of a function of several variables,, Journal of Optimization Theory and Applications, 54 (1987), 241.  doi: 10.1007/BF00939433.  Google Scholar

[9]

C. Kanzow, Global optimization techniques for mixed complementarity problems,, Journal of Global Optimization, 16 (2000), 1.  doi: 10.1023/A:1008331803982.  Google Scholar

[10]

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[11]

J. Kostrowicki and L. Piela, Diffusion equation method of global minimization: Performance for standard test functions,, J. Optim. Theory Appl., 69 (1991), 269.  doi: 10.1007/BF00940643.  Google Scholar

[12]

X. Liu, A computable filled function used for global optimization,, Appllied Mathematica and Computation, 126 (2002), 271.  doi: 10.1016/S0096-3003(00)00157-0.  Google Scholar

[13]

X. Liu, A new filled function applied to global optimization,, Computers and Operations Research, 31 (2004), 61.  doi: 10.1016/S0305-0548(02)00154-5.  Google Scholar

[14]

J. More, G. Burton and K. Hillstrom, User guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois,, 1980., ().   Google Scholar

[15]

J. L. Nazareth and L. Qi, Globalization of Newton's methods for solving nonlinear equations,, Numerical linear algebra with applications, 3 (1996), 239.   Google Scholar

[16]

H. Sellami and S. M. Robinson, Implementation of a continuation method for normal maps,, Mathematical Programming, 76 (1997), 563.  doi: 10.1007/BF02614398.  Google Scholar

[17]

X. J. Tong, L. Qi and Y. F. Yang, The Lagrangian globalization method for nonsmooth constrained equations,, Computational Optimization and Applications, 33 (2006), 89.  doi: 10.1007/s10589-005-5960-9.  Google Scholar

[18]

Z. Y. Wu, M. Mammadov, F. S. Bai and Y. J. Yang, A filled function method for nonlinear equations,, Applied Mathematics and Computation, 189 (2007), 1196.  doi: 10.1016/j.amc.2006.11.183.  Google Scholar

[19]

Z. Xu, H. X. Huang, P. M. Pardalos and C. X. Xu, Filled functions for unconstrained global optimization,, Journal of Global Optimization, 20 (2001), 49.  doi: 10.1023/A:1011207512894.  Google Scholar

[20]

W. X. Zhu, Globally concavizied filled function method for the box constrained global minimization problem,, Optimization Methods and Software, 21 (2006), 653.  doi: 10.1080/10556780600628188.  Google Scholar

show all references

References:
[1]

S. C. Billups and L. T. Watson, A probability-one homotopy algorithm for nonsmooth equations and mixed complementarity problems,, SIAM Journal on Optimization, 12 (2002), 606.  doi: 10.1137/S105262340037758X.  Google Scholar

[2]

X. Chen, L. Qi and Y. F. Yang, Lagrangian globalization methods for nonlinear complementarity problem,, Journal of Optimization Theory and Applications, 112 (2002), 77.  doi: 10.1023/A:1013092412197.  Google Scholar

[3]

B. Cetin, J. Barhen and J. Burdick, Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization,, J. Optim. Theory Appl., 77 (1993), 97.  doi: 10.1007/BF00940781.  Google Scholar

[4]

A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods,, SIAM, (2000).  doi: 10.1137/1.9780898719857.  Google Scholar

[5]

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,, SIAM, (1996).  doi: 10.1137/1.9781611971200.  Google Scholar

[6]

C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, Handbook of Test Problems in Local and Global Optimization,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-1-4757-3040-1.  Google Scholar

[7]

R. Ge, A filled function method for finding a global minimizer of a function of several variables,, Mathematical Programming, 46 (1990), 191.  doi: 10.1007/BF01585737.  Google Scholar

[8]

R. P. Ge and Y. Qin, A class of filled functions for finding global minimizers of a function of several variables,, Journal of Optimization Theory and Applications, 54 (1987), 241.  doi: 10.1007/BF00939433.  Google Scholar

[9]

C. Kanzow, Global optimization techniques for mixed complementarity problems,, Journal of Global Optimization, 16 (2000), 1.  doi: 10.1023/A:1008331803982.  Google Scholar

[10]

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[11]

J. Kostrowicki and L. Piela, Diffusion equation method of global minimization: Performance for standard test functions,, J. Optim. Theory Appl., 69 (1991), 269.  doi: 10.1007/BF00940643.  Google Scholar

[12]

X. Liu, A computable filled function used for global optimization,, Appllied Mathematica and Computation, 126 (2002), 271.  doi: 10.1016/S0096-3003(00)00157-0.  Google Scholar

[13]

X. Liu, A new filled function applied to global optimization,, Computers and Operations Research, 31 (2004), 61.  doi: 10.1016/S0305-0548(02)00154-5.  Google Scholar

[14]

J. More, G. Burton and K. Hillstrom, User guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois,, 1980., ().   Google Scholar

[15]

J. L. Nazareth and L. Qi, Globalization of Newton's methods for solving nonlinear equations,, Numerical linear algebra with applications, 3 (1996), 239.   Google Scholar

[16]

H. Sellami and S. M. Robinson, Implementation of a continuation method for normal maps,, Mathematical Programming, 76 (1997), 563.  doi: 10.1007/BF02614398.  Google Scholar

[17]

X. J. Tong, L. Qi and Y. F. Yang, The Lagrangian globalization method for nonsmooth constrained equations,, Computational Optimization and Applications, 33 (2006), 89.  doi: 10.1007/s10589-005-5960-9.  Google Scholar

[18]

Z. Y. Wu, M. Mammadov, F. S. Bai and Y. J. Yang, A filled function method for nonlinear equations,, Applied Mathematics and Computation, 189 (2007), 1196.  doi: 10.1016/j.amc.2006.11.183.  Google Scholar

[19]

Z. Xu, H. X. Huang, P. M. Pardalos and C. X. Xu, Filled functions for unconstrained global optimization,, Journal of Global Optimization, 20 (2001), 49.  doi: 10.1023/A:1011207512894.  Google Scholar

[20]

W. X. Zhu, Globally concavizied filled function method for the box constrained global minimization problem,, Optimization Methods and Software, 21 (2006), 653.  doi: 10.1080/10556780600628188.  Google Scholar

[1]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[2]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[5]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[11]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[12]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[13]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[14]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[17]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[18]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]