-
Previous Article
Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved
- JIMO Home
- This Issue
-
Next Article
Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance
An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management
1. | Computer Science Department, Sciences Faculty, Hassiba Benbouali University, BP 151 Chlef 02000, Algeria |
References:
[1] |
T. Andersson and P. Varbrand, Decision support tools for ambulance dispatch and relocation, Journal of the Operational Research Society, 58 (2007), 195-201. |
[2] |
R. Batta, J. M. Dolan and N. N. Krishnamorthy, The maximal expected covering location problem: Revisited, Transportation Science, 23 (1989), 277-287.
doi: 10.1287/trsc.23.4.277. |
[3] |
R. Bejar, C.Domshlakb, C. Fernandeza, C. Gomesb, B. Krishnamacharic, B. Selmanb and M. Vallsd, Sensor networks and distributed CSP: Communication, computation and complexity, Artificial Intelligence, 161 (2005), 117-147.
doi: 10.1016/j.artint.2004.09.002. |
[4] |
A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications, Computers and industrial engineering, 62 (2012), 408-420. |
[5] |
E. Bowring, M. Tambei and M. Yokoo, Multiply-constrained distributed constraint optimization, The $5^{th}$ International Joint Conference on Autonomous Agents and Multiagent Systems, (2006), 1413-1420. |
[6] |
R. Church and C. R. Velle, The maximal covering location problem, Regional Science, 32 (1974), 101-118. |
[7] |
M. S. Daskin, Maximum expected covering model: Formulation, properties and heuristic solution, Transportation Science, 17 (1984), 48-70. |
[8] |
A. Farinelli, A. Rogers, A. Pectu and N. R. Jennings, Decentralized coordination of low power embedded devices using the max sum algorithm, The $7^{th}$ International Conference on Autonomous Agents and Multiagent Systems, (2008), 639-646. |
[9] |
J. Gaudreault , J. M. Frayret and G. Pesant, Distributed Search for Supply Chain Coordination, Computers in Industry, 60 (2009), 441-451. |
[10] |
J. Gaudreault, Algorithmes Pour la Prise de Decision Distribuee en Contexte Hierarchique Ph.D thesis, Universite Laval, 2009. |
[11] |
M. Gendreau, G. Laporte and F. Semet, A dynamic model and parallel tabu search heuristic for real time ambulance relocation, Parallel Computing, 27 (2001), 1641-1653. |
[12] |
M. Gendreau, G. Laporte and F. Semet, The Maximal expected coverage relocation problem for emergency vehicles, Journal of Operational Research Society, 57 (2006), 22-28. |
[13] |
A. Grubshtein, R. Zivan, T. Grinshpoun and A. Meisels, Local search for distributed asymmetric optimization, The $9^{th}$ International Conference on Autonomous Agents and Multiagent Systems, (2010), 1015-1022. |
[14] |
A. Haghani, H. Hu and Q. Tian, An Optimization Model for Real-Time Emergency Vehicle Dispatching and Routing, The $82^{nd}$ annual meeting of the Transportation Research Board, 2003. |
[15] |
A. Haghani and S.Yang, Real time emergency response fleet deployment concepts, systems, simulation and case studies, Dynamic fleet management, 57 (2007), 133-162. |
[16] |
W. D. Harvey and M. L. Ginsberg, Limited Discrepancy search, the $14^{th}$ International joint conference on Artificial intelligence, (1995), 607-613. |
[17] |
K. Hirayama and M. Yokoo, The distributed breakout algorithms, Artificial Intelligence - Special issue: Distributed constraint satisfaction, 161 (2005), 89-115.
doi: 10.1016/j.artint.2004.08.004. |
[18] |
S. Ibri, H. Drias and M. Nourelfath, A parallel hybrid ant-tabu algorithm for integrated emergency vehicle dispatching and covering problem, International Journal of Innovative Computing and Applications, 2 (2010), 226-236. |
[19] |
S. Ibri, M. Nourelfath and H. Drias, A multi-agent approach for the integrated emergency vehicle allocation and covering problem, Engineering Applications of Artificial Intelligence, 25 (2012), 554-565. |
[20] |
P. Kolesar and W. E. Walker, An algorithm for the dynamic relocation of fire companies, Operations Research, 22 (1974), 249-274. |
[21] |
B. Lopez, B. Innocenti, S. Aciar and L. Cuevas, A multi-agent system to support ambulance coordination in time-critical patient treatment, $7^{th}$ Symposio Argentino de Inteligencia Artificial, ASAI, 22 (2005), 43-54. |
[22] |
B. Lopez, B. Innocenti and D. Busquets, A multiagent system for coordinating ambulances for emergency medical services, Intelligent Systems, IEEE, 23 (2008), 50-57. |
[23] |
R. T. Maheswaran, J. P. Pearce and M. Tambe, Distributed algorithms for DCOP: A graphical-game-based approach, The $17^{th}$ International Conference on Parallel and Distributed Computing Systems, (2004), 432-439. |
[24] |
R. Mailler and V. Lesser, Solving distributed constraint optimization problems using cooperative mediation, The $3^{th}$ International Joint Conference on Autonomous Agents and Multiagent Systems, (2004), 438-445. |
[25] |
P. J. Modi, Distributed Constraint Optimization for Multi-agent Systems, Ph.D thesis, University of Southern California, 2003. |
[26] |
P. J. Modi, W. M. Shen, M. Tambe and M. Yokoo, ADOPT: Asynchronous distributed constraint optimization with quality guarantees, Artificial Intelligence Journal, 161 (2005), 149-180.
doi: 10.1016/j.artint.2004.09.003. |
[27] |
A. Petcu and B. Faltings, A Scalable Method for Multiagent Constraint Optimization, The $19^{th}$ International Joint Conference on Artificial Intelligence, 2005. |
[28] |
J. F. Repede and J. J. Bernardo, Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky, European Journal of Operational Research, 75 (1994), 567-581.
doi: 10.1016/0377-2217(94)90297-6. |
[29] |
C. ReVelle and K. Hogan, The maximum availability location problem, Transportation Science, 23 (1989), 192-200.
doi: 10.1287/trsc.23.3.192. |
[30] |
A. Rogers, A. Farenelli, R. Stranders and N. R. Jennings, Bounded approximate decentralised coordination via the max-sum algorithm, Artificial Intelligence, 175 (2011), 730-759.
doi: 10.1016/j.artint.2010.11.001. |
[31] |
D. A. Schilling, D. J. Elzinga, J. Cohon, R. L. Church and C. S. ReVelle, The TEAM/FLEET models for simultaneous facility and equipment siting, Transportation Science, 13 (1979), 163-175. |
[32] |
V. Schmid, Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming, European journal of operational research, 219 (2012), 611-621.
doi: 10.1016/j.ejor.2011.10.043. |
[33] |
R. Standers, A. Farenelli, A. Rogers and N. R. Jennings, Decentralised coordination of continuously valued control parameters using the max sum algorithm, The $8^{th}$ International Conference on Autonomous Agents and Multiagent Systems, (2009), 601-608. |
[34] |
C. R. Toregas, R. S. Wain, C. S. ReVelle and L. Bergman, The location of emergency service facilities, Operations Research, 19 (1971), 1363-1373. |
[35] |
M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara, The distributed constraint satisfaction problem: Formalization and algorithms, IEEE Transactions on Knowledge and Data Engineering, 10 (1998), 673-685.
doi: 10.1109/69.729707. |
[36] |
R. Zanjirani Farahani, N. Asgari, N. Heidari, M. Hosseininia and M. Goh, Covering problems in facility location: A review, Computers and industrial engineering, 62 (2012), 368-407.
doi: 10.1016/j.cie.2011.08.020. |
[37] |
W. Zhang, G. Wang, Z. Xing and L. Wittenburg, Distributed stochastic algorithm and distributed breakout algorithm: Properties, comparison and applications to COP sensor networks, Artificial intelligence, 161 (2005), 55-87.
doi: 10.1016/j.artint.2004.10.004. |
[38] |
R. Zivan, Anytime local search for distributed constraint optimization, The $5^{th}$ International Joint Conference on Autonomous Agents and Multiagent Systems, (2008), 1449-1452. |
show all references
References:
[1] |
T. Andersson and P. Varbrand, Decision support tools for ambulance dispatch and relocation, Journal of the Operational Research Society, 58 (2007), 195-201. |
[2] |
R. Batta, J. M. Dolan and N. N. Krishnamorthy, The maximal expected covering location problem: Revisited, Transportation Science, 23 (1989), 277-287.
doi: 10.1287/trsc.23.4.277. |
[3] |
R. Bejar, C.Domshlakb, C. Fernandeza, C. Gomesb, B. Krishnamacharic, B. Selmanb and M. Vallsd, Sensor networks and distributed CSP: Communication, computation and complexity, Artificial Intelligence, 161 (2005), 117-147.
doi: 10.1016/j.artint.2004.09.002. |
[4] |
A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications, Computers and industrial engineering, 62 (2012), 408-420. |
[5] |
E. Bowring, M. Tambei and M. Yokoo, Multiply-constrained distributed constraint optimization, The $5^{th}$ International Joint Conference on Autonomous Agents and Multiagent Systems, (2006), 1413-1420. |
[6] |
R. Church and C. R. Velle, The maximal covering location problem, Regional Science, 32 (1974), 101-118. |
[7] |
M. S. Daskin, Maximum expected covering model: Formulation, properties and heuristic solution, Transportation Science, 17 (1984), 48-70. |
[8] |
A. Farinelli, A. Rogers, A. Pectu and N. R. Jennings, Decentralized coordination of low power embedded devices using the max sum algorithm, The $7^{th}$ International Conference on Autonomous Agents and Multiagent Systems, (2008), 639-646. |
[9] |
J. Gaudreault , J. M. Frayret and G. Pesant, Distributed Search for Supply Chain Coordination, Computers in Industry, 60 (2009), 441-451. |
[10] |
J. Gaudreault, Algorithmes Pour la Prise de Decision Distribuee en Contexte Hierarchique Ph.D thesis, Universite Laval, 2009. |
[11] |
M. Gendreau, G. Laporte and F. Semet, A dynamic model and parallel tabu search heuristic for real time ambulance relocation, Parallel Computing, 27 (2001), 1641-1653. |
[12] |
M. Gendreau, G. Laporte and F. Semet, The Maximal expected coverage relocation problem for emergency vehicles, Journal of Operational Research Society, 57 (2006), 22-28. |
[13] |
A. Grubshtein, R. Zivan, T. Grinshpoun and A. Meisels, Local search for distributed asymmetric optimization, The $9^{th}$ International Conference on Autonomous Agents and Multiagent Systems, (2010), 1015-1022. |
[14] |
A. Haghani, H. Hu and Q. Tian, An Optimization Model for Real-Time Emergency Vehicle Dispatching and Routing, The $82^{nd}$ annual meeting of the Transportation Research Board, 2003. |
[15] |
A. Haghani and S.Yang, Real time emergency response fleet deployment concepts, systems, simulation and case studies, Dynamic fleet management, 57 (2007), 133-162. |
[16] |
W. D. Harvey and M. L. Ginsberg, Limited Discrepancy search, the $14^{th}$ International joint conference on Artificial intelligence, (1995), 607-613. |
[17] |
K. Hirayama and M. Yokoo, The distributed breakout algorithms, Artificial Intelligence - Special issue: Distributed constraint satisfaction, 161 (2005), 89-115.
doi: 10.1016/j.artint.2004.08.004. |
[18] |
S. Ibri, H. Drias and M. Nourelfath, A parallel hybrid ant-tabu algorithm for integrated emergency vehicle dispatching and covering problem, International Journal of Innovative Computing and Applications, 2 (2010), 226-236. |
[19] |
S. Ibri, M. Nourelfath and H. Drias, A multi-agent approach for the integrated emergency vehicle allocation and covering problem, Engineering Applications of Artificial Intelligence, 25 (2012), 554-565. |
[20] |
P. Kolesar and W. E. Walker, An algorithm for the dynamic relocation of fire companies, Operations Research, 22 (1974), 249-274. |
[21] |
B. Lopez, B. Innocenti, S. Aciar and L. Cuevas, A multi-agent system to support ambulance coordination in time-critical patient treatment, $7^{th}$ Symposio Argentino de Inteligencia Artificial, ASAI, 22 (2005), 43-54. |
[22] |
B. Lopez, B. Innocenti and D. Busquets, A multiagent system for coordinating ambulances for emergency medical services, Intelligent Systems, IEEE, 23 (2008), 50-57. |
[23] |
R. T. Maheswaran, J. P. Pearce and M. Tambe, Distributed algorithms for DCOP: A graphical-game-based approach, The $17^{th}$ International Conference on Parallel and Distributed Computing Systems, (2004), 432-439. |
[24] |
R. Mailler and V. Lesser, Solving distributed constraint optimization problems using cooperative mediation, The $3^{th}$ International Joint Conference on Autonomous Agents and Multiagent Systems, (2004), 438-445. |
[25] |
P. J. Modi, Distributed Constraint Optimization for Multi-agent Systems, Ph.D thesis, University of Southern California, 2003. |
[26] |
P. J. Modi, W. M. Shen, M. Tambe and M. Yokoo, ADOPT: Asynchronous distributed constraint optimization with quality guarantees, Artificial Intelligence Journal, 161 (2005), 149-180.
doi: 10.1016/j.artint.2004.09.003. |
[27] |
A. Petcu and B. Faltings, A Scalable Method for Multiagent Constraint Optimization, The $19^{th}$ International Joint Conference on Artificial Intelligence, 2005. |
[28] |
J. F. Repede and J. J. Bernardo, Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky, European Journal of Operational Research, 75 (1994), 567-581.
doi: 10.1016/0377-2217(94)90297-6. |
[29] |
C. ReVelle and K. Hogan, The maximum availability location problem, Transportation Science, 23 (1989), 192-200.
doi: 10.1287/trsc.23.3.192. |
[30] |
A. Rogers, A. Farenelli, R. Stranders and N. R. Jennings, Bounded approximate decentralised coordination via the max-sum algorithm, Artificial Intelligence, 175 (2011), 730-759.
doi: 10.1016/j.artint.2010.11.001. |
[31] |
D. A. Schilling, D. J. Elzinga, J. Cohon, R. L. Church and C. S. ReVelle, The TEAM/FLEET models for simultaneous facility and equipment siting, Transportation Science, 13 (1979), 163-175. |
[32] |
V. Schmid, Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming, European journal of operational research, 219 (2012), 611-621.
doi: 10.1016/j.ejor.2011.10.043. |
[33] |
R. Standers, A. Farenelli, A. Rogers and N. R. Jennings, Decentralised coordination of continuously valued control parameters using the max sum algorithm, The $8^{th}$ International Conference on Autonomous Agents and Multiagent Systems, (2009), 601-608. |
[34] |
C. R. Toregas, R. S. Wain, C. S. ReVelle and L. Bergman, The location of emergency service facilities, Operations Research, 19 (1971), 1363-1373. |
[35] |
M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara, The distributed constraint satisfaction problem: Formalization and algorithms, IEEE Transactions on Knowledge and Data Engineering, 10 (1998), 673-685.
doi: 10.1109/69.729707. |
[36] |
R. Zanjirani Farahani, N. Asgari, N. Heidari, M. Hosseininia and M. Goh, Covering problems in facility location: A review, Computers and industrial engineering, 62 (2012), 368-407.
doi: 10.1016/j.cie.2011.08.020. |
[37] |
W. Zhang, G. Wang, Z. Xing and L. Wittenburg, Distributed stochastic algorithm and distributed breakout algorithm: Properties, comparison and applications to COP sensor networks, Artificial intelligence, 161 (2005), 55-87.
doi: 10.1016/j.artint.2004.10.004. |
[38] |
R. Zivan, Anytime local search for distributed constraint optimization, The $5^{th}$ International Joint Conference on Autonomous Agents and Multiagent Systems, (2008), 1449-1452. |
[1] |
Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020 |
[2] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[3] |
Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2022, 14 (1) : 1-28. doi: 10.3934/jgm.2021005 |
[4] |
Ke Yang, Wencheng Zou, Zhengrong Xiang, Ronghao Wang. Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1535-1551. doi: 10.3934/dcdss.2020396 |
[5] |
Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012 |
[6] |
Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105 |
[7] |
Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027 |
[8] |
Mei Luo, Jinrong Wang, Yumei Liao. Bounded consensus of double-integrator stochastic multi-agent systems. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022088 |
[9] |
Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623 |
[10] |
Zhong Wan, Jingjing Liu, Jing Zhang. Nonlinear optimization to management problems of end-of-life vehicles with environmental protection awareness and damaged/aging degrees. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2117-2139. doi: 10.3934/jimo.2019046 |
[11] |
Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929 |
[12] |
Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations and Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028 |
[13] |
Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111 |
[14] |
Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489 |
[15] |
Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022 |
[16] |
Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379 |
[17] |
Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047 |
[18] |
Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021024 |
[19] |
Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631 |
[20] |
Rodrigo A. Garrido, Ivan Aguirre. Emergency logistics for disaster management under spatio-temporal demand correlation: The earthquakes case. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2369-2387. doi: 10.3934/jimo.2019058 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]