April  2015, 11(2): 421-437. doi: 10.3934/jimo.2015.11.421

Recovery of the local volatility function using regularization and a gradient projection method

1. 

College of Applied Arts and Science of Beijing Union University, Beijing 100191, China

2. 

Renmin University of China, Beijing 100872, China

3. 

Hebei Normal University, Shijiazhuang 050024, China

Received  February 2013 Revised  April 2014 Published  September 2014

This paper considers the problem of calibrating the volatility function using regularization technique and the gradient projection method from given option price data. It is an ill-posed problem because of at least one of three well-posed conditions violating. We start with the European option pricing problem. We formulate the problem by obtaining the integral equation from Dupire equation and provide a theory of identifying the local volatility function $\sigma(y,\tau)$ when the parameter $\mu\neq 0$, and then we apply regularization technique for volatility function retrieval problems. A projected gradient method is developed for recovering the volatility function. Numerical simulations are given to illustrate the feasibility of our method.
Citation: Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421
References:
[1]

J. Barzilai and J. Borwein, Two-point step size gradient methods,, IMA Journal of Numerical Analysis, 8 (1988), 141. doi: 10.1093/imanum/8.1.141.

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Econ., 81 (1973), 637.

[3]

I. Bouchouev and V. Isakov, The inverse problem of option pricing,, Inverse Problems, 13 (1997). doi: 10.1088/0266-5611/13/5/001.

[4]

I. Bouchouev and V. Isakov, Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/3/201.

[5]

I. Bouchouev, V. Isakov and N. Valdivia, Recovery of volatility coefficient by linearization,, Quantitative Finance, 2 (2002), 257. doi: 10.1088/1469-7688/2/4/302.

[6]

S. Crépy, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization,, SIAM J.Math.Anal., 34 (2003), 1183. doi: 10.1137/S0036141001400202.

[7]

Y. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming,, Numerische Mathematik, 100 (2005), 21. doi: 10.1007/s00211-004-0569-y.

[8]

B. Dupire, Pricing with a smile,, Risk, 7 (1994), 18.

[9]

H. Egger and H. Engl, Tikhonov regularization applied to the inverse problem of option pricing: Convergence analysis and rates,, Inverse Problems, 21 (2005), 1027. doi: 10.1088/0266-5611/21/3/014.

[10]

H. Egger, T. Hein and B. Hofmann, On decoupling of volatility smile and term structure in inverse option pricing,, Inverse Problems, 22 (2006), 1247. doi: 10.1088/0266-5611/22/4/008.

[11]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-1740-8.

[12]

T. Hein and B. Hofmann, On the nature of ill-posedness of an inverse problem arising in option pricing,, Inverse Problems, 19 (2003), 1319. doi: 10.1088/0266-5611/19/6/006.

[13]

T. Hein, Some analysis of Tikhonov regularization of the inverse problem of option pricing in the price-dependent case,, Journal for Analysis and its Applications, 24 (2005), 593. doi: 10.4171/ZAA/1258.

[14]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327.

[15]

B. Hofmann and R. Krämer, On maximum entropy regularization for a specific inverse problem in option pricing,, J.Inv.Ill-Posed Problems, 13 (2005), 41. doi: 10.1515/1569394053583739.

[16]

J. Hull and A. White, An analysis of the bias in option pricing caused by a stochastic volatility,, Advances in Futures and Options Research, 3 (1988), 29.

[17]

J. Hull, Options, Futures and Other Derivatives,, Sixth Edition, (2010).

[18]

L. S. Jiang and Y. S. Tao, Identifying the volatility of underlying assets from option prices,, Inverse Problems, 17 (2001), 137. doi: 10.1088/0266-5611/17/1/311.

[19]

L. S. Jiang, Q. H. Chen, L. J. Wang and J. E. Zhang, A new well-posed algorithm to recover implied local volatility,, Quantitative Finance, 3 (2003), 451. doi: 10.1088/1469-7688/3/6/304.

[20]

R. Krämer and M. Richter, Ill-posedness versus ill-conditioning - an example from inverse option pricing,, Applicable Analysis, 87 (2008), 465. doi: 10.1080/00036810802032136.

[21]

L. Lu and L. Yi, Recovery implied volatility of underlying asset from European option price,, J.Inv.Ill-Posed Problems, 17 (2009), 499. doi: 10.1515/JIIP.2009.031.

[22]

R. Merton, Option Pricing when underlying stock returns are discontinuous,, Journal of Financial Economics, 3 (1976), 125.

[23]

D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind,, Journal of the Association for Computing Machinery, 9 (1962), 84. doi: 10.1145/321105.321114.

[24]

S. Twomey, Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions,, J. Comput. Phys., 18 (1975), 188.

[25]

Y. F. Wang, Computational Methods for Inverse Problems and Their Applications,, Higher Education Press, (2007).

[26]

Y. F. Wang and C. C. Yang, A regularizing active set method for retrieval of atmospheric aerosol particle size distribution function,, Journal of Optical Society of America A, 25 (2008), 348. doi: 10.1364/JOSAA.25.000348.

[27]

Y. F. Wang, An efficient gradient method for maximum entropy regularizing retrieval of atmospheric aerosol particle size distribution function,, Journal of Aerosol Science, 39 (2008), 305.

[28]

Y. F. Wang and S. Q. Ma, Projected Barzilai-Borwein methods for large scale nonnegative image restorations,, Inverse Problems in Science and Engineering, 15 (2007), 559. doi: 10.1080/17415970600881897.

[29]

Y. X. Yuan, Gradient methods for large scale convex quadratic functions,, Optimization and Regularization for Computational Inverse Problems & Applications (Y. F. Wang, (2010), 141. doi: 10.1007/978-3-642-13742-6_7.

show all references

References:
[1]

J. Barzilai and J. Borwein, Two-point step size gradient methods,, IMA Journal of Numerical Analysis, 8 (1988), 141. doi: 10.1093/imanum/8.1.141.

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Econ., 81 (1973), 637.

[3]

I. Bouchouev and V. Isakov, The inverse problem of option pricing,, Inverse Problems, 13 (1997). doi: 10.1088/0266-5611/13/5/001.

[4]

I. Bouchouev and V. Isakov, Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/3/201.

[5]

I. Bouchouev, V. Isakov and N. Valdivia, Recovery of volatility coefficient by linearization,, Quantitative Finance, 2 (2002), 257. doi: 10.1088/1469-7688/2/4/302.

[6]

S. Crépy, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization,, SIAM J.Math.Anal., 34 (2003), 1183. doi: 10.1137/S0036141001400202.

[7]

Y. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming,, Numerische Mathematik, 100 (2005), 21. doi: 10.1007/s00211-004-0569-y.

[8]

B. Dupire, Pricing with a smile,, Risk, 7 (1994), 18.

[9]

H. Egger and H. Engl, Tikhonov regularization applied to the inverse problem of option pricing: Convergence analysis and rates,, Inverse Problems, 21 (2005), 1027. doi: 10.1088/0266-5611/21/3/014.

[10]

H. Egger, T. Hein and B. Hofmann, On decoupling of volatility smile and term structure in inverse option pricing,, Inverse Problems, 22 (2006), 1247. doi: 10.1088/0266-5611/22/4/008.

[11]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-1740-8.

[12]

T. Hein and B. Hofmann, On the nature of ill-posedness of an inverse problem arising in option pricing,, Inverse Problems, 19 (2003), 1319. doi: 10.1088/0266-5611/19/6/006.

[13]

T. Hein, Some analysis of Tikhonov regularization of the inverse problem of option pricing in the price-dependent case,, Journal for Analysis and its Applications, 24 (2005), 593. doi: 10.4171/ZAA/1258.

[14]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327.

[15]

B. Hofmann and R. Krämer, On maximum entropy regularization for a specific inverse problem in option pricing,, J.Inv.Ill-Posed Problems, 13 (2005), 41. doi: 10.1515/1569394053583739.

[16]

J. Hull and A. White, An analysis of the bias in option pricing caused by a stochastic volatility,, Advances in Futures and Options Research, 3 (1988), 29.

[17]

J. Hull, Options, Futures and Other Derivatives,, Sixth Edition, (2010).

[18]

L. S. Jiang and Y. S. Tao, Identifying the volatility of underlying assets from option prices,, Inverse Problems, 17 (2001), 137. doi: 10.1088/0266-5611/17/1/311.

[19]

L. S. Jiang, Q. H. Chen, L. J. Wang and J. E. Zhang, A new well-posed algorithm to recover implied local volatility,, Quantitative Finance, 3 (2003), 451. doi: 10.1088/1469-7688/3/6/304.

[20]

R. Krämer and M. Richter, Ill-posedness versus ill-conditioning - an example from inverse option pricing,, Applicable Analysis, 87 (2008), 465. doi: 10.1080/00036810802032136.

[21]

L. Lu and L. Yi, Recovery implied volatility of underlying asset from European option price,, J.Inv.Ill-Posed Problems, 17 (2009), 499. doi: 10.1515/JIIP.2009.031.

[22]

R. Merton, Option Pricing when underlying stock returns are discontinuous,, Journal of Financial Economics, 3 (1976), 125.

[23]

D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind,, Journal of the Association for Computing Machinery, 9 (1962), 84. doi: 10.1145/321105.321114.

[24]

S. Twomey, Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions,, J. Comput. Phys., 18 (1975), 188.

[25]

Y. F. Wang, Computational Methods for Inverse Problems and Their Applications,, Higher Education Press, (2007).

[26]

Y. F. Wang and C. C. Yang, A regularizing active set method for retrieval of atmospheric aerosol particle size distribution function,, Journal of Optical Society of America A, 25 (2008), 348. doi: 10.1364/JOSAA.25.000348.

[27]

Y. F. Wang, An efficient gradient method for maximum entropy regularizing retrieval of atmospheric aerosol particle size distribution function,, Journal of Aerosol Science, 39 (2008), 305.

[28]

Y. F. Wang and S. Q. Ma, Projected Barzilai-Borwein methods for large scale nonnegative image restorations,, Inverse Problems in Science and Engineering, 15 (2007), 559. doi: 10.1080/17415970600881897.

[29]

Y. X. Yuan, Gradient methods for large scale convex quadratic functions,, Optimization and Regularization for Computational Inverse Problems & Applications (Y. F. Wang, (2010), 141. doi: 10.1007/978-3-642-13742-6_7.

[1]

Victor Isakov. Recovery of time dependent volatility coefficient by linearization. Evolution Equations & Control Theory, 2014, 3 (1) : 119-134. doi: 10.3934/eect.2014.3.119

[2]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[3]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[4]

Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019

[5]

Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems & Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149

[6]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[7]

Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial & Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299

[8]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[9]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[10]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[11]

Shishun Li, Zhengda Huang. Guaranteed descent conjugate gradient methods with modified secant condition. Journal of Industrial & Management Optimization, 2008, 4 (4) : 739-755. doi: 10.3934/jimo.2008.4.739

[12]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[13]

Wataru Nakamura, Yasushi Narushima, Hiroshi Yabe. Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (3) : 595-619. doi: 10.3934/jimo.2013.9.595

[14]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[15]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[16]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[17]

Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157

[18]

Gaohang Yu, Lutai Guan, Guoyin Li. Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property. Journal of Industrial & Management Optimization, 2008, 4 (3) : 565-579. doi: 10.3934/jimo.2008.4.565

[19]

Yigui Ou, Haichan Lin. A class of accelerated conjugate-gradient-like methods based on a modified secant equation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019013

[20]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]