\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new method for strong-weak linear bilevel programming problem

Abstract Related Papers Cited by
  • We first propose an exact penalty method to solve strong-weak linear bilevel programming problem (for short, SWLBP) for every fixed cooperation degree from the follower. Then, we prove that the solution of penalized problem is also that of the original problem under some conditions. Furthermore, we give some properties of the optimal value function (as a function of the follower's cooperation degree) of SWLBP. Finally, we develop a method to acquire the critical points of the optimal value function without enumerating all values of the cooperation degree from the follower, and thus this function is also achieved. Numerical results show that the proposed methods are feasible.
    Mathematics Subject Classification: Primary: 90C26, 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Aboussoror and P. Loridan, Strong-weak Stackelberg problems in finite dimentional spaces, Serdica Mathematical Journal, 21 (1995), 151-170.

    [2]

    A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method, Journal of Mathematical Analysis and Applications, 304 (2005), 399-408.doi: 10.1016/j.jmaa.2004.09.033.

    [3]

    A. Aboussoror, S. Adly and V. Jalby, Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems, Journal of Industrial and Management Optimization, 7 (2011), 559-571.doi: 10.3934/jimo.2011.7.559.

    [4]

    G. Anandalingam and D. J. White, A solution for the linear static Stackelberg problem using penalty function, IEEE Transactions Automatic Control, 35 (1990), 1170-1173.doi: 10.1109/9.58565.

    [5]

    J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic, Dordrecht, 1998.doi: 10.1007/978-1-4757-2836-1.

    [6]

    M. Campelo, S. Dantas and S. Scheimberg, A note on a penalty function approach for solving bi-level linear programs, Journal of Global Optimization, 16 (2000), 245-255.doi: 10.1023/A:1008308218364.

    [7]

    D. Cao and L. C. Leung, A partial cooperation model for non-unique linear two-level decision problems, European Journal of Operational Research, 140 (2002), 134-141.doi: 10.1016/S0377-2217(01)00225-9.

    [8]

    B. Colson, P. Marcotte and G. Savard, Bilevel programming: A survey, 4OR: Q. J. Oper. Res., 3 (2005), 87-107.doi: 10.1007/s10288-005-0071-0.

    [9]

    B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization, Ann. Oper. Res., 153 (2007), 235-256.doi: 10.1007/s10479-007-0176-2.

    [10]

    S. Dassanayaka, Methods of Variational Analysis in Pessimistic Bilevel Programming, PhD Thesis, Wayne State University, 2010.

    [11]

    S. Dempe, Foundations of Bilevel Programming, Nonconvex Optimization and its Applications Series, Kluwer Academic, Dordrecht, 2002.

    [12]

    S. Dempe, Annottated bibliography on bilevel programming and mathematical problems with equilibrium constraints, Optimization, 52 (2003), 333-359.doi: 10.1080/0233193031000149894.

    [13]

    S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions, Mathematical Programming, 138 (2013), 447-473.doi: 10.1007/s10107-011-0508-5.

    [14]

    S. Dempe, B. S. Mordukhovich and A. B. Zemkoho, Necessary optimality conditions in pessimistic bilevel programming, Optimization, 63 (2014), 505-533.doi: 10.1080/02331934.2012.696641.

    [15]

    J. L. Goffin, On convergence rates of subgradient optimization methods, Mathematical Programming, 13 (1977), 329-347.doi: 10.1007/BF01584346.

    [16]

    P. Hansen, B. Jaumard and G. Savard, New branch-and-bound rules for linear bilevel programming, SIAM J. on Scientific and Statistical Computing, 13 (1992), 1194-1217.doi: 10.1137/0913069.

    [17]

    P. Loridan and J. Morgan, Weak via strong Stackelberg problem: New results, Journal of Global Optimization, 8 (1996), 263-287.doi: 10.1007/BF00121269.

    [18]

    L. Mallozzi and J. Morgan, Hierarchical systems with weighted reaction set, Nonlinear Optimization and Applications, Plenum Press, New York, (1996), 271-282.

    [19]

    R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

    [20]

    K. Shimizu, Y. Ishizuka and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming, Kluwer Academic, Dordrecht, 1997.doi: 10.1007/978-1-4615-6305-1.

    [21]

    M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Mathematical Programming, 103 (2005), 225-249.doi: 10.1007/s10107-005-0581-8.

    [22]

    L. N. Vicente and P. H. Calamai, Bilevel and multilevel programming: A bibliography review, Journal of Global Optimization, 5 (1994), 291-306.doi: 10.1007/BF01096458.

    [23]

    G. Wang, Z. Wan and X. Wang, Bibliography on bilevel programming, Advances in Mathematics(in Chinese), 36 (2007), 513-529.

    [24]

    U. P. Wen and S. T. Hsu, Linear bilevel programming problems-a review, Journal of Operational Research Society, 42 (1991), 125-133.

    [25]

    D. J. White and G. Anandalingam, A penalty function approach for solving bi-level linear programs, Journal of Global Optimization, 3 (1993), 397-419.doi: 10.1007/BF01096412.

    [26]

    W. Wiesemann, A. Tsoukalas, P. Kleniati and B. Rustem, Pessimistic bilevel optimisation, SIAM Journal on Optimization, 23 (2013), 353-380.doi: 10.1137/120864015.

    [27]

    J. Ye and D. Zhu, New necessary optimality conditions for bilevel programs by combining the mpec and value function approaches, SIAM Journal on Optimization, 20 (2010), 1885-1905.doi: 10.1137/080725088.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return