April  2015, 11(2): 549-562. doi: 10.3934/jimo.2015.11.549

On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality

1. 

College of Science, Chongqing JiaoTong University, Chongqing 400074, China

2. 

Department of Mathematics, Chongqing Normal University, Chongqing, 400047

3. 

Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845

Received  April 2013 Revised  April 2014 Published  September 2014

In this paper, by using a scalarization method, we establish sufficient conditions for Hölder continuity of approximate solution mapping to a class of parametric weak generalized Ky Fan Inequality with set-valued mappings. These results extend and improve some known results in the literature. Furthermore, some examples are given to illustrate the obtained results.
Citation: Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549
References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984).

[2]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhanser, (1990).

[3]

M. Ait and H. Riahi, Sensitivity analysis for abstract equilibrium problems,, J. Math. Anal. Appl, 306 (2005), 684. doi: 10.1016/j.jmaa.2004.10.011.

[4]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim, 29 (2008), 24. doi: 10.1080/01630560701873068.

[5]

L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems,, Nonlinear Analysis, 75 (2012), 2293. doi: 10.1016/j.na.2011.10.029.

[6]

M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems,, Oper. Res. Lett., 31 (2003), 445. doi: 10.1016/S0167-6377(03)00051-8.

[7]

M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria,, Optimization, 55 (2006), 221. doi: 10.1080/02331930600662732.

[8]

H. Brezis and L. Nirenberg, Stampacchia, G.: A remark on Ky Fan's minimax principle,, Boll. Unione Mat. Ital., VI (1972), 129.

[9]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis,, Springer, (2005).

[10]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543. doi: 10.1007/s10898-004-2692-9.

[11]

K. Fan, Extensions of two fixed point theorems of F.E. Browder,, Math. Z., 112 (1969), 234. doi: 10.1007/BF01110225.

[12]

K. Fan, A minimax inequality and applications,, In Shihsha, (1972), 103.

[13]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria,, Mathematical Theories. Kluwer, (2000). doi: 10.1007/978-1-4613-0299-5.

[14]

F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models,, Nonconvex Optimization and Its Applications, 58 (2001), 187. doi: 10.1007/0-306-48026-3_12.

[15]

X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139. doi: 10.1023/A:1026418122905.

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197. doi: 10.1007/s10957-008-9379-1.

[17]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35. doi: 10.1007/s10957-008-9429-8.

[18]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267. doi: 10.1016/j.mcm.2005.06.010.

[19]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429. doi: 10.1007/s10957-008-9386-2.

[20]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329. doi: 10.1007/s10957-007-9190-4.

[21]

S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vectorequilibrium problems,, European J. Oper. Res., 199 (2009), 334. doi: 10.1016/j.ejor.2008.12.024.

[22]

S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems,, European J. Oper. Res., 210 (2011), 148. doi: 10.1016/j.ejor.2010.10.005.

[23]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541. doi: 10.1007/s10898-010-9641-6.

[24]

S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan Inequality,, J. Optim. Theory Appl., 149 (2011), 540. doi: 10.1007/s10957-011-9803-9.

[25]

X. B. Li, S. J. Li and C. R. Chen, Lipschitz Continuity of an approximate solution mapping to equilibrium problems,, Taiwan J. Math., 16 (2012), 1027.

[26]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation,, I: Basic Theory, (2006).

[27]

Z. Y. Peng, Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems,, Abst. Appl. Anal., 2012 (2012). doi: 10.1155/2012/236413.

[28]

N. D. Yen, Hölder continuity of solutions to parametric variational inequalities,, Appl. Math. Opim., 31 (1995), 245. doi: 10.1007/BF01215992.

show all references

References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984).

[2]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhanser, (1990).

[3]

M. Ait and H. Riahi, Sensitivity analysis for abstract equilibrium problems,, J. Math. Anal. Appl, 306 (2005), 684. doi: 10.1016/j.jmaa.2004.10.011.

[4]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim, 29 (2008), 24. doi: 10.1080/01630560701873068.

[5]

L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems,, Nonlinear Analysis, 75 (2012), 2293. doi: 10.1016/j.na.2011.10.029.

[6]

M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems,, Oper. Res. Lett., 31 (2003), 445. doi: 10.1016/S0167-6377(03)00051-8.

[7]

M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria,, Optimization, 55 (2006), 221. doi: 10.1080/02331930600662732.

[8]

H. Brezis and L. Nirenberg, Stampacchia, G.: A remark on Ky Fan's minimax principle,, Boll. Unione Mat. Ital., VI (1972), 129.

[9]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis,, Springer, (2005).

[10]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543. doi: 10.1007/s10898-004-2692-9.

[11]

K. Fan, Extensions of two fixed point theorems of F.E. Browder,, Math. Z., 112 (1969), 234. doi: 10.1007/BF01110225.

[12]

K. Fan, A minimax inequality and applications,, In Shihsha, (1972), 103.

[13]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria,, Mathematical Theories. Kluwer, (2000). doi: 10.1007/978-1-4613-0299-5.

[14]

F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models,, Nonconvex Optimization and Its Applications, 58 (2001), 187. doi: 10.1007/0-306-48026-3_12.

[15]

X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139. doi: 10.1023/A:1026418122905.

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197. doi: 10.1007/s10957-008-9379-1.

[17]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35. doi: 10.1007/s10957-008-9429-8.

[18]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267. doi: 10.1016/j.mcm.2005.06.010.

[19]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429. doi: 10.1007/s10957-008-9386-2.

[20]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329. doi: 10.1007/s10957-007-9190-4.

[21]

S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vectorequilibrium problems,, European J. Oper. Res., 199 (2009), 334. doi: 10.1016/j.ejor.2008.12.024.

[22]

S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems,, European J. Oper. Res., 210 (2011), 148. doi: 10.1016/j.ejor.2010.10.005.

[23]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541. doi: 10.1007/s10898-010-9641-6.

[24]

S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan Inequality,, J. Optim. Theory Appl., 149 (2011), 540. doi: 10.1007/s10957-011-9803-9.

[25]

X. B. Li, S. J. Li and C. R. Chen, Lipschitz Continuity of an approximate solution mapping to equilibrium problems,, Taiwan J. Math., 16 (2012), 1027.

[26]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation,, I: Basic Theory, (2006).

[27]

Z. Y. Peng, Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems,, Abst. Appl. Anal., 2012 (2012). doi: 10.1155/2012/236413.

[28]

N. D. Yen, Hölder continuity of solutions to parametric variational inequalities,, Appl. Math. Opim., 31 (1995), 245. doi: 10.1007/BF01215992.

[1]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[2]

Yangdong Xu, Shengjie Li. Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities. Journal of Industrial & Management Optimization, 2017, 13 (2) : 967-975. doi: 10.3934/jimo.2016056

[3]

Chunrong Chen, Zhimiao Fang. A note on semicontinuity to a parametric generalized Ky Fan inequality. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 779-784. doi: 10.3934/naco.2012.2.779

[4]

Qiusheng Qiu, Xinmin Yang. Scalarization of approximate solution for vector equilibrium problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 143-151. doi: 10.3934/jimo.2013.9.143

[5]

Lam Quoc Anh, Pham Thanh Duoc, Tran Ngoc Tam. Continuity of approximate solution maps to vector equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1685-1699. doi: 10.3934/jimo.2017013

[6]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[7]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

[8]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[9]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[10]

Minghua Li, Chunrong Chen, Shengjie Li. Error bounds of regularized gap functions for nonmonotone Ky Fan inequalities. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019001

[11]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[12]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[13]

Luis Barreira, Claudia Valls. Hölder Grobman-Hartman linearization. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 187-197. doi: 10.3934/dcds.2007.18.187

[14]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[15]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[16]

Vincent Lynch. Decay of correlations for non-Hölder observables. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 19-46. doi: 10.3934/dcds.2006.16.19

[17]

Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87

[18]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[19]

Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669

[20]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]