-
Previous Article
Optimality conditions for strong vector equilibrium problems under a weak constraint qualification
- JIMO Home
- This Issue
-
Next Article
A new method for strong-weak linear bilevel programming problem
On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality
1. | College of Science, Chongqing JiaoTong University, Chongqing 400074, China |
2. | Department of Mathematics, Chongqing Normal University, Chongqing, 400047 |
3. | Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845 |
References:
[1] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984). Google Scholar |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhanser, (1990). Google Scholar |
[3] |
M. Ait and H. Riahi, Sensitivity analysis for abstract equilibrium problems,, J. Math. Anal. Appl, 306 (2005), 684.
doi: 10.1016/j.jmaa.2004.10.011. |
[4] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim, 29 (2008), 24.
doi: 10.1080/01630560701873068. |
[5] |
L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems,, Nonlinear Analysis, 75 (2012), 2293.
doi: 10.1016/j.na.2011.10.029. |
[6] |
M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems,, Oper. Res. Lett., 31 (2003), 445.
doi: 10.1016/S0167-6377(03)00051-8. |
[7] |
M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria,, Optimization, 55 (2006), 221.
doi: 10.1080/02331930600662732. |
[8] |
H. Brezis and L. Nirenberg, Stampacchia, G.: A remark on Ky Fan's minimax principle,, Boll. Unione Mat. Ital., VI (1972), 129. Google Scholar |
[9] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis,, Springer, (2005). Google Scholar |
[10] |
Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.
doi: 10.1007/s10898-004-2692-9. |
[11] |
K. Fan, Extensions of two fixed point theorems of F.E. Browder,, Math. Z., 112 (1969), 234.
doi: 10.1007/BF01110225. |
[12] |
K. Fan, A minimax inequality and applications,, In Shihsha, (1972), 103. Google Scholar |
[13] |
F. Giannessi, Vector Variational Inequalities and Vector Equilibria,, Mathematical Theories. Kluwer, (2000).
doi: 10.1007/978-1-4613-0299-5. |
[14] |
F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models,, Nonconvex Optimization and Its Applications, 58 (2001), 187.
doi: 10.1007/0-306-48026-3_12. |
[15] |
X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.
doi: 10.1023/A:1026418122905. |
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[17] |
X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.
doi: 10.1007/s10957-008-9429-8. |
[18] |
N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.
doi: 10.1016/j.mcm.2005.06.010. |
[19] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.
doi: 10.1007/s10957-008-9386-2. |
[20] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[21] |
S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vectorequilibrium problems,, European J. Oper. Res., 199 (2009), 334.
doi: 10.1016/j.ejor.2008.12.024. |
[22] |
S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems,, European J. Oper. Res., 210 (2011), 148.
doi: 10.1016/j.ejor.2010.10.005. |
[23] |
X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541.
doi: 10.1007/s10898-010-9641-6. |
[24] |
S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan Inequality,, J. Optim. Theory Appl., 149 (2011), 540.
doi: 10.1007/s10957-011-9803-9. |
[25] |
X. B. Li, S. J. Li and C. R. Chen, Lipschitz Continuity of an approximate solution mapping to equilibrium problems,, Taiwan J. Math., 16 (2012), 1027. Google Scholar |
[26] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation,, I: Basic Theory, (2006). Google Scholar |
[27] |
Z. Y. Peng, Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems,, Abst. Appl. Anal., 2012 (2012).
doi: 10.1155/2012/236413. |
[28] |
N. D. Yen, Hölder continuity of solutions to parametric variational inequalities,, Appl. Math. Opim., 31 (1995), 245.
doi: 10.1007/BF01215992. |
show all references
References:
[1] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984). Google Scholar |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhanser, (1990). Google Scholar |
[3] |
M. Ait and H. Riahi, Sensitivity analysis for abstract equilibrium problems,, J. Math. Anal. Appl, 306 (2005), 684.
doi: 10.1016/j.jmaa.2004.10.011. |
[4] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim, 29 (2008), 24.
doi: 10.1080/01630560701873068. |
[5] |
L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems,, Nonlinear Analysis, 75 (2012), 2293.
doi: 10.1016/j.na.2011.10.029. |
[6] |
M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems,, Oper. Res. Lett., 31 (2003), 445.
doi: 10.1016/S0167-6377(03)00051-8. |
[7] |
M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria,, Optimization, 55 (2006), 221.
doi: 10.1080/02331930600662732. |
[8] |
H. Brezis and L. Nirenberg, Stampacchia, G.: A remark on Ky Fan's minimax principle,, Boll. Unione Mat. Ital., VI (1972), 129. Google Scholar |
[9] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis,, Springer, (2005). Google Scholar |
[10] |
Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.
doi: 10.1007/s10898-004-2692-9. |
[11] |
K. Fan, Extensions of two fixed point theorems of F.E. Browder,, Math. Z., 112 (1969), 234.
doi: 10.1007/BF01110225. |
[12] |
K. Fan, A minimax inequality and applications,, In Shihsha, (1972), 103. Google Scholar |
[13] |
F. Giannessi, Vector Variational Inequalities and Vector Equilibria,, Mathematical Theories. Kluwer, (2000).
doi: 10.1007/978-1-4613-0299-5. |
[14] |
F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models,, Nonconvex Optimization and Its Applications, 58 (2001), 187.
doi: 10.1007/0-306-48026-3_12. |
[15] |
X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.
doi: 10.1023/A:1026418122905. |
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[17] |
X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.
doi: 10.1007/s10957-008-9429-8. |
[18] |
N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.
doi: 10.1016/j.mcm.2005.06.010. |
[19] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.
doi: 10.1007/s10957-008-9386-2. |
[20] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[21] |
S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vectorequilibrium problems,, European J. Oper. Res., 199 (2009), 334.
doi: 10.1016/j.ejor.2008.12.024. |
[22] |
S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems,, European J. Oper. Res., 210 (2011), 148.
doi: 10.1016/j.ejor.2010.10.005. |
[23] |
X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541.
doi: 10.1007/s10898-010-9641-6. |
[24] |
S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan Inequality,, J. Optim. Theory Appl., 149 (2011), 540.
doi: 10.1007/s10957-011-9803-9. |
[25] |
X. B. Li, S. J. Li and C. R. Chen, Lipschitz Continuity of an approximate solution mapping to equilibrium problems,, Taiwan J. Math., 16 (2012), 1027. Google Scholar |
[26] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation,, I: Basic Theory, (2006). Google Scholar |
[27] |
Z. Y. Peng, Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems,, Abst. Appl. Anal., 2012 (2012).
doi: 10.1155/2012/236413. |
[28] |
N. D. Yen, Hölder continuity of solutions to parametric variational inequalities,, Appl. Math. Opim., 31 (1995), 245.
doi: 10.1007/BF01215992. |
[1] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[2] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[3] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[4] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[5] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[6] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[7] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[8] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[9] |
Editorial Office. Retraction: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin and Zhike Han, Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-957. doi: 10.3934/dcdss.2019064 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[11] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[12] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[13] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[14] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[15] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[16] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[17] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[18] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[19] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[20] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]