April  2015, 11(2): 631-644. doi: 10.3934/jimo.2015.11.631

A penalty-based method from reconstructing smooth local volatility surface from American options

1. 

China Center for Special Economic Zone Research, Shenzhen University, 3688 Nanhai Ave., Shenzhen, 518060, China

2. 

Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, WA 6845, Australia

Received  November 2013 Revised  May 2014 Published  September 2014

This paper is devoted to develop a robust penalty-based method of reconstructing smooth local volatility surface from the observed American option prices. This reconstruction problem is posed as an inverse problem: given a finite set of observed American option prices, find a local volatility function such that the theoretical option prices matches the observed ones optimally with respect to a prescribed performance criterion. The theoretical American option prices are governed by a set of partial differential complementarity problems (PDCP). We propose a penalty-based numerical method for the solution of the PDCP. Typically, the reconstruction problem is ill-posed and a bicubic spline regularization technique is thus proposed to overcome this difficulty. We apply a gradient-based optimization algorithm to solve this nonlinear optimization problem, where the Jacobian of the cost function is computed via finite difference approximation. Two numerical experiments: a synthetic American put option example and a real market American put option example, are performed to show the robustness and effectiveness of the proposed method to reconstructing the unknown volatility surface.
Citation: Kai Zhang, Kok Lay Teo. A penalty-based method from reconstructing smooth local volatility surface from American options. Journal of Industrial & Management Optimization, 2015, 11 (2) : 631-644. doi: 10.3934/jimo.2015.11.631
References:
[1]

Y. Achdou and O. Pironneau, Computational Methods For Option Pricing,, Vol. 30. SIAM, (2005). doi: 10.1137/1.9780898717495. Google Scholar

[2]

A. Anderson and J. Andresen, Jump diffusion process: Volatility smile fitting and numerical methods for option pricing,, Review of Derivatives Research, 4 (2000), 231. Google Scholar

[3]

M. Avellaneda, A. Levy and A. Paras, Pricing and hedging derivative securities in markets with uncertain volatilities,, Applied Mathematical Finance, 2 (1995), 73. doi: 10.1080/13504869500000005. Google Scholar

[4]

F. E. Benth, K. H.Karlsen and K. Reikvam, A semilinear Black and Scholes partial differential equation for valuing American options,, Finance and Stochastics, 7 (2003), 277. doi: 10.1007/s007800200091. Google Scholar

[5]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637. doi: 10.1086/260062. Google Scholar

[6]

I. Bouchouev and V. Isakov, Uniqueness, stability, and numerical methods for the inverse problem that arises in financial markets,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/3/201. Google Scholar

[7]

T. F. Coleman, Y. Li and A. Verma, Reconstructing the unknown local volatility function,, Journal of Computational Finance, 2 (1999), 77. Google Scholar

[8]

S. Crepey, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization,, SIAM Journal of Mathematical Analysis, 34 (2003), 1183. doi: 10.1137/S0036141001400202. Google Scholar

[9]

J. Huang and J. S. Pang, A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options,, Journal of Computational Finance, 4 (2000), 21. Google Scholar

[10]

J. Hull, Options, Futures, and Other Derivatives,, Prentice-Hall, (2005). Google Scholar

[11]

N. Jackson, E. Suli and S. Howison, Computation of deterministic volatility surfaces,, Journal of Computational Finance, 2 (1999), 5. Google Scholar

[12]

L. Jiang, Q. Chen, L. Wang and J. Zhang, A new well-posed algorithm to recover implied local volatility,, Quantitative Finance, 3 (2003), 451. doi: 10.1088/1469-7688/3/6/304. Google Scholar

[13]

Y. K. Kwok, Mathematical Models of Financial Derivatives,, Springer, (2008). Google Scholar

[14]

R. Lagnado and S. Osher, A technique for calibrating derivative security pricing models: Numerical solution of the inverse problem,, Journal of Computational Finance, 1 (1997), 13. Google Scholar

[15]

R. Lagnado and S. Osher, Reconciling differences,, Risk, 10 (1997), 79. Google Scholar

[16]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279. doi: 10.1007/s10957-009-9559-7. Google Scholar

[17]

R. C. Merton, Option pricing when underlying stock return are discontinuous,, Journal of financial economics, 3 (1976), 125. doi: 10.1016/0304-405X(76)90022-2. Google Scholar

[18]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems,, Journal of Computational Finance, 5 (2002), 69. Google Scholar

[19]

J. Nocedal and S. Wright, Numerical Optimization Series: Springer Series in Operations Research and Financial Engineering 2nd ed,, Springer, (2006). Google Scholar

[20]

S. Stojanovic, Implied volatility for American options via optimal control and fast numerical solutions of obstacle problems,, Differential Equations and Control Theory, 225 (2002), 277. Google Scholar

[21]

G. Wahba, Splines Models for Observational Data. Series in Applied Mathematics,, Vol. 59, (1990). doi: 10.1137/1.9781611970128. Google Scholar

[22]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227. doi: 10.1007/s10957-006-9062-3. Google Scholar

[23]

P. Wilmott, Paul Wimott on Quantitave Finance,, Wiley, (2000). Google Scholar

[24]

K. Zhang and S. Wang, A computational scheme for uncertain volatility model in option pricing,, Applied Numerical Mathematics, 59 (2009), 1754. doi: 10.1016/j.apnum.2009.01.004. Google Scholar

[25]

K. Zhang and S. Wang, Interior penalty approach to american option pricing,, Journal of Industrial and Management Optimization, 7 (2011), 435. doi: 10.3934/jimo.2011.7.435. Google Scholar

[26]

K. Zhang, K. L. Teo and M. Swartz, A robust numerical scheme for pricing American options under regime switching based on penalty method,, Computational Economics, 43 (2014), 463. doi: 10.1007/s10614-013-9361-3. Google Scholar

show all references

References:
[1]

Y. Achdou and O. Pironneau, Computational Methods For Option Pricing,, Vol. 30. SIAM, (2005). doi: 10.1137/1.9780898717495. Google Scholar

[2]

A. Anderson and J. Andresen, Jump diffusion process: Volatility smile fitting and numerical methods for option pricing,, Review of Derivatives Research, 4 (2000), 231. Google Scholar

[3]

M. Avellaneda, A. Levy and A. Paras, Pricing and hedging derivative securities in markets with uncertain volatilities,, Applied Mathematical Finance, 2 (1995), 73. doi: 10.1080/13504869500000005. Google Scholar

[4]

F. E. Benth, K. H.Karlsen and K. Reikvam, A semilinear Black and Scholes partial differential equation for valuing American options,, Finance and Stochastics, 7 (2003), 277. doi: 10.1007/s007800200091. Google Scholar

[5]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637. doi: 10.1086/260062. Google Scholar

[6]

I. Bouchouev and V. Isakov, Uniqueness, stability, and numerical methods for the inverse problem that arises in financial markets,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/3/201. Google Scholar

[7]

T. F. Coleman, Y. Li and A. Verma, Reconstructing the unknown local volatility function,, Journal of Computational Finance, 2 (1999), 77. Google Scholar

[8]

S. Crepey, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization,, SIAM Journal of Mathematical Analysis, 34 (2003), 1183. doi: 10.1137/S0036141001400202. Google Scholar

[9]

J. Huang and J. S. Pang, A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options,, Journal of Computational Finance, 4 (2000), 21. Google Scholar

[10]

J. Hull, Options, Futures, and Other Derivatives,, Prentice-Hall, (2005). Google Scholar

[11]

N. Jackson, E. Suli and S. Howison, Computation of deterministic volatility surfaces,, Journal of Computational Finance, 2 (1999), 5. Google Scholar

[12]

L. Jiang, Q. Chen, L. Wang and J. Zhang, A new well-posed algorithm to recover implied local volatility,, Quantitative Finance, 3 (2003), 451. doi: 10.1088/1469-7688/3/6/304. Google Scholar

[13]

Y. K. Kwok, Mathematical Models of Financial Derivatives,, Springer, (2008). Google Scholar

[14]

R. Lagnado and S. Osher, A technique for calibrating derivative security pricing models: Numerical solution of the inverse problem,, Journal of Computational Finance, 1 (1997), 13. Google Scholar

[15]

R. Lagnado and S. Osher, Reconciling differences,, Risk, 10 (1997), 79. Google Scholar

[16]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279. doi: 10.1007/s10957-009-9559-7. Google Scholar

[17]

R. C. Merton, Option pricing when underlying stock return are discontinuous,, Journal of financial economics, 3 (1976), 125. doi: 10.1016/0304-405X(76)90022-2. Google Scholar

[18]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems,, Journal of Computational Finance, 5 (2002), 69. Google Scholar

[19]

J. Nocedal and S. Wright, Numerical Optimization Series: Springer Series in Operations Research and Financial Engineering 2nd ed,, Springer, (2006). Google Scholar

[20]

S. Stojanovic, Implied volatility for American options via optimal control and fast numerical solutions of obstacle problems,, Differential Equations and Control Theory, 225 (2002), 277. Google Scholar

[21]

G. Wahba, Splines Models for Observational Data. Series in Applied Mathematics,, Vol. 59, (1990). doi: 10.1137/1.9781611970128. Google Scholar

[22]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227. doi: 10.1007/s10957-006-9062-3. Google Scholar

[23]

P. Wilmott, Paul Wimott on Quantitave Finance,, Wiley, (2000). Google Scholar

[24]

K. Zhang and S. Wang, A computational scheme for uncertain volatility model in option pricing,, Applied Numerical Mathematics, 59 (2009), 1754. doi: 10.1016/j.apnum.2009.01.004. Google Scholar

[25]

K. Zhang and S. Wang, Interior penalty approach to american option pricing,, Journal of Industrial and Management Optimization, 7 (2011), 435. doi: 10.3934/jimo.2011.7.435. Google Scholar

[26]

K. Zhang, K. L. Teo and M. Swartz, A robust numerical scheme for pricing American options under regime switching based on penalty method,, Computational Economics, 43 (2014), 463. doi: 10.1007/s10614-013-9361-3. Google Scholar

[1]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[2]

Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435

[3]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[6]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[7]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[8]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[9]

Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241

[10]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[11]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[12]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020102

[13]

Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems & Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599

[14]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[15]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[16]

Yibing Lv, Zhongping Wan. Linear bilevel multiobjective optimization problem: Penalty approach. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1213-1223. doi: 10.3934/jimo.2018092

[17]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[18]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[19]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[20]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]