April  2015, 11(2): 645-660. doi: 10.3934/jimo.2015.11.645

Neural network smoothing approximation method for stochastic variational inequality problems

1. 

School of Economics, Southwest University for Nationalities, Chengdu, Sichuan 610041, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064

Received  June 2012 Revised  May 2014 Published  September 2014

This paper is concerned with solving a stochastic variational inequality problem (for short, SVIP) from a viewpoint of minimization of mixed conditional value-at-risk (CVaR). The regularized gap function for SVIP is used to define a loss function for the SVIP and mixed CVaR to measure the loss. In this setting, SVIP can be reformulated as a deterministic minimization problem. We show that the reformulation is a convex program for a huge class of SVIP under suitable conditions. Since mixed CVaR involves the plus function and mathematical expectation, the neural network smoothing function and Monte Carlo method are employed to get an approximation problem of the minimization reformulation. Finally, we consider the convergence of optimal solutions and stationary points of the approximation.
Citation: Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645
References:
[1]

R. P. Agdeppa, N. Yamashita and M. Fukushima, Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem, Pacific Journal of Optimization, 6 (2010), 3-19.

[2]

R. J. Aumann, Integrals of set-value function, Journal of Mathematical Analysis and Applications, 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1.

[3]

B. T. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems, SIAM Journal on Optimization, 7 (1997), 403-420. doi: 10.1137/S1052623495280615.

[4]

X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Mathematics of Operations Research, 30 (2005), 1022-1038. doi: 10.1287/moor.1050.0160.

[5]

X. Chen and G. H. Lin, CVaR-based formulation and approximation method for Stochastic variational inequalities, Numerical Algebra, Control and Optimization, 1 (2011), 35-48. doi: 10.3934/naco.2011.1.35.

[6]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Mathematical Programming, 117 (2009), 51-80. doi: 10.1007/s10107-007-0163-z.

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[8]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Mathematical Programming, 53 (1992), 99-110. doi: 10.1007/BF01585696.

[9]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003. doi: 10.1007/b97544.

[10]

H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 482-506. doi: 10.1137/050630805.

[11]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming, 48 (1990), 161-220. doi: 10.1007/BF01582255.

[12]

W. W. Hogan, Energy policy models for project independence, Computers and Operations Research, 2 (1975), 251-271. doi: 10.1016/0305-0548(75)90008-8.

[13]

H. Jiang and H. F. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 53 (2008), 1462-1475. doi: 10.1109/TAC.2008.925853.

[14]

D. Kinderlehre and G. Stampacchia, An Intruduction to Variational Inequalities and Their Aplications, Academic Press, New York, 1980.

[15]

G. H. Lin, X. Chen and M. Fukushima, New restricted NCP function and their applications to stochastic NCP and stochastic MPEC, Optimization, 56 (2007), 641-953. doi: 10.1080/02331930701617320.

[16]

G. H. Lin and M. Fukushima, Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A survey, Pacific Journal of Optimization, 6 (2010), 455-482.

[17]

G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity peoblems, Optimization Methods and Software, 21 (2006), 551-564. doi: 10.1080/10556780600627610.

[18]

C. Ling, L. Qi, G. Zhou and L. Caccetta, The SC' property of an expected residual function arising from stochastic complementarity problems, Operations Research Letters, 36 (2008), 456-460. doi: 10.1016/j.orl.2008.01.010.

[19]

M. J. Luo and G. H. Lin, Expected residual minimization method for stochastic variational inequality problems, Journal of Optimization Theory and Applications, 140 (2009), 103-116. doi: 10.1007/s10957-008-9439-6.

[20]

M. J. Luo and G. H. Lin, Convergence results of the ERM method for nonlinear stochastic variational inequality problems, Journal of Optimization Theory and Applications, 142 (2009), 569-581. doi: 10.1007/s10957-009-9534-3.

[21]

F. W. Meng, J. Sun and M. Goh, Stochastic optimization problems with CVaR risk measure and their sample average approximation, Journal of Optimization Theory and Applications, 146 (2010), 399-418. doi: 10.1007/s10957-010-9676-3.

[22]

L. Q. Qi, D. F. Sun and G. L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Mathematical Programming, 87 (2000), 1-35.

[23]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 493-517.

[24]

A. Ruszczynski and A. Shapiro, Stochastic Programming, Elsevier, Amsterdam, 2003.

[25]

A. Shapiro, Stochastic Programming by Monte Carlo Simulation Methods, Stochastic Programming E-Print Series, 2000.

[26]

M. Z. Wang, M. M. Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks, Journal of Industrial and Management Optimization, 7 (2011), 317-345. doi: 10.3934/jimo.2011.7.317.

[27]

D. De Wolf and Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium model, Management Science, 43 (1997), 190-197.

[28]

H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems, Asia-Pacific Journal of Operational Research, 27 (2010), 103-119. doi: 10.1142/S0217595910002569.

[29]

H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications, Mathematical Programming, 119 (2009), 371-401. doi: 10.1007/s10107-008-0214-0.

[30]

C. Zhang and X. Chen, Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty, Journal of Optimization Theory and Applications, 137 (2008), 277-295. doi: 10.1007/s10957-008-9358-6.

show all references

References:
[1]

R. P. Agdeppa, N. Yamashita and M. Fukushima, Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem, Pacific Journal of Optimization, 6 (2010), 3-19.

[2]

R. J. Aumann, Integrals of set-value function, Journal of Mathematical Analysis and Applications, 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1.

[3]

B. T. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems, SIAM Journal on Optimization, 7 (1997), 403-420. doi: 10.1137/S1052623495280615.

[4]

X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Mathematics of Operations Research, 30 (2005), 1022-1038. doi: 10.1287/moor.1050.0160.

[5]

X. Chen and G. H. Lin, CVaR-based formulation and approximation method for Stochastic variational inequalities, Numerical Algebra, Control and Optimization, 1 (2011), 35-48. doi: 10.3934/naco.2011.1.35.

[6]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Mathematical Programming, 117 (2009), 51-80. doi: 10.1007/s10107-007-0163-z.

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[8]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Mathematical Programming, 53 (1992), 99-110. doi: 10.1007/BF01585696.

[9]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003. doi: 10.1007/b97544.

[10]

H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 482-506. doi: 10.1137/050630805.

[11]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming, 48 (1990), 161-220. doi: 10.1007/BF01582255.

[12]

W. W. Hogan, Energy policy models for project independence, Computers and Operations Research, 2 (1975), 251-271. doi: 10.1016/0305-0548(75)90008-8.

[13]

H. Jiang and H. F. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 53 (2008), 1462-1475. doi: 10.1109/TAC.2008.925853.

[14]

D. Kinderlehre and G. Stampacchia, An Intruduction to Variational Inequalities and Their Aplications, Academic Press, New York, 1980.

[15]

G. H. Lin, X. Chen and M. Fukushima, New restricted NCP function and their applications to stochastic NCP and stochastic MPEC, Optimization, 56 (2007), 641-953. doi: 10.1080/02331930701617320.

[16]

G. H. Lin and M. Fukushima, Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A survey, Pacific Journal of Optimization, 6 (2010), 455-482.

[17]

G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity peoblems, Optimization Methods and Software, 21 (2006), 551-564. doi: 10.1080/10556780600627610.

[18]

C. Ling, L. Qi, G. Zhou and L. Caccetta, The SC' property of an expected residual function arising from stochastic complementarity problems, Operations Research Letters, 36 (2008), 456-460. doi: 10.1016/j.orl.2008.01.010.

[19]

M. J. Luo and G. H. Lin, Expected residual minimization method for stochastic variational inequality problems, Journal of Optimization Theory and Applications, 140 (2009), 103-116. doi: 10.1007/s10957-008-9439-6.

[20]

M. J. Luo and G. H. Lin, Convergence results of the ERM method for nonlinear stochastic variational inequality problems, Journal of Optimization Theory and Applications, 142 (2009), 569-581. doi: 10.1007/s10957-009-9534-3.

[21]

F. W. Meng, J. Sun and M. Goh, Stochastic optimization problems with CVaR risk measure and their sample average approximation, Journal of Optimization Theory and Applications, 146 (2010), 399-418. doi: 10.1007/s10957-010-9676-3.

[22]

L. Q. Qi, D. F. Sun and G. L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Mathematical Programming, 87 (2000), 1-35.

[23]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 493-517.

[24]

A. Ruszczynski and A. Shapiro, Stochastic Programming, Elsevier, Amsterdam, 2003.

[25]

A. Shapiro, Stochastic Programming by Monte Carlo Simulation Methods, Stochastic Programming E-Print Series, 2000.

[26]

M. Z. Wang, M. M. Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks, Journal of Industrial and Management Optimization, 7 (2011), 317-345. doi: 10.3934/jimo.2011.7.317.

[27]

D. De Wolf and Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium model, Management Science, 43 (1997), 190-197.

[28]

H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems, Asia-Pacific Journal of Operational Research, 27 (2010), 103-119. doi: 10.1142/S0217595910002569.

[29]

H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications, Mathematical Programming, 119 (2009), 371-401. doi: 10.1007/s10107-008-0214-0.

[30]

C. Zhang and X. Chen, Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty, Journal of Optimization Theory and Applications, 137 (2008), 277-295. doi: 10.1007/s10957-008-9358-6.

[1]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[2]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[3]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[6]

Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1479-1494. doi: 10.3934/dcdss.2020374

[7]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[8]

Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022017

[9]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[10]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[11]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[12]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[13]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[14]

Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034

[15]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[16]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations and Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[17]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[18]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[19]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[20]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (145)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]