• Previous Article
    Neural network smoothing approximation method for stochastic variational inequality problems
  • JIMO Home
  • This Issue
  • Next Article
    Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
April  2015, 11(2): 661-671. doi: 10.3934/jimo.2015.11.661

Stability of solution mapping for parametric symmetric vector equilibrium problems

1. 

College of Sciences, Chongqing Jiaotong University, Chongqing, 400074, China

2. 

College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067

Received  October 2013 Revised  May 2014 Published  September 2014

This paper is concerned with the stability for a parametric symmetric vector equilibrium problem. A parametric gap function for the parametric symmetric vector equilibrium problem is introduced and investigated. By virtue of this function, we establish the sufficient and necessary conditions for the Hausdorff lower semicontinuity of solution mapping to a parametric symmetric vector equilibrium problem. The results presented in this paper generalize and improve the corresponding results in the recent literature.
Citation: Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661
References:
[1]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481. doi: 10.1023/A:1017581009670.

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435. doi: 10.1023/A:1015366419163.

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).

[4]

B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982). doi: 10.1007/978-3-0348-6328-5.

[5]

C. Berge, Topological Spaces., Oliver and Boyd, (1963).

[6]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.

[7]

C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528. doi: 10.1016/j.na.2008.02.032.

[8]

C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519. doi: 10.3934/jimo.2007.3.519.

[9]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417. doi: 10.1016/j.camwa.2010.08.036.

[10]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).

[11]

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451. doi: 10.1007/s10898-003-2683-2.

[12]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359. doi: 10.1007/s10957-007-9309-7.

[13]

A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099. doi: 10.1016/j.jmaa.2005.09.079.

[14]

J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708. doi: 10.1016/S0022-247X(03)00479-7.

[15]

F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197. doi: 10.1007/s10957-008-9379-1.

[17]

N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343. doi: 10.1016/S0895-7177(03)90045-8.

[18]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329. doi: 10.1007/s10957-007-9190-4.

[19]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123. doi: 10.1080/02331930412331330379.

[20]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429. doi: 10.1007/s10957-008-9386-2.

[21]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283. doi: 10.1023/A:1014830925232.

[22]

M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.

[23]

W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909. doi: 10.1016/j.jmaa.2011.09.052.

[24]

J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240. doi: 10.1006/jmaa.1997.5288.

[25]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807. doi: 10.1016/j.camwa.2011.11.046.

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317. doi: 10.1007/s10957-011-9843-1.

[27]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.

show all references

References:
[1]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481. doi: 10.1023/A:1017581009670.

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435. doi: 10.1023/A:1015366419163.

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).

[4]

B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982). doi: 10.1007/978-3-0348-6328-5.

[5]

C. Berge, Topological Spaces., Oliver and Boyd, (1963).

[6]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.

[7]

C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528. doi: 10.1016/j.na.2008.02.032.

[8]

C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519. doi: 10.3934/jimo.2007.3.519.

[9]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417. doi: 10.1016/j.camwa.2010.08.036.

[10]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).

[11]

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451. doi: 10.1007/s10898-003-2683-2.

[12]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359. doi: 10.1007/s10957-007-9309-7.

[13]

A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099. doi: 10.1016/j.jmaa.2005.09.079.

[14]

J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708. doi: 10.1016/S0022-247X(03)00479-7.

[15]

F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197. doi: 10.1007/s10957-008-9379-1.

[17]

N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343. doi: 10.1016/S0895-7177(03)90045-8.

[18]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329. doi: 10.1007/s10957-007-9190-4.

[19]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123. doi: 10.1080/02331930412331330379.

[20]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429. doi: 10.1007/s10957-008-9386-2.

[21]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283. doi: 10.1023/A:1014830925232.

[22]

M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.

[23]

W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909. doi: 10.1016/j.jmaa.2011.09.052.

[24]

J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240. doi: 10.1006/jmaa.1997.5288.

[25]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807. doi: 10.1016/j.camwa.2011.11.046.

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317. doi: 10.1007/s10957-011-9843-1.

[27]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.

[1]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[2]

Kenji Kimura, Jen-Chih Yao. Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 167-181. doi: 10.3934/jimo.2008.4.167

[3]

Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial & Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027

[4]

Lam Quoc Anh, Nguyen Van Hung. Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems. Journal of Industrial & Management Optimization, 2018, 14 (1) : 65-79. doi: 10.3934/jimo.2017037

[5]

Lam Quoc Anh, Pham Thanh Duoc, Tran Ngoc Tam. Continuity of approximate solution maps to vector equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1685-1699. doi: 10.3934/jimo.2017013

[6]

Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1303-1309. doi: 10.3934/jimo.2016.12.1303

[7]

Yangdong Xu, Shengjie Li. Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities. Journal of Industrial & Management Optimization, 2017, 13 (2) : 967-975. doi: 10.3934/jimo.2016056

[8]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[9]

Kenji Kimura, Yeong-Cheng Liou, Soon-Yi Wu, Jen-Chih Yao. Well-posedness for parametric vector equilibrium problems with applications. Journal of Industrial & Management Optimization, 2008, 4 (2) : 313-327. doi: 10.3934/jimo.2008.4.313

[10]

Qiusheng Qiu, Xinmin Yang. Scalarization of approximate solution for vector equilibrium problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 143-151. doi: 10.3934/jimo.2013.9.143

[11]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[12]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[13]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[14]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[15]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[16]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[17]

Nguyen Ba Minh, Pham Huu Sach. Strong vector equilibrium problems with LSC approximate solution mappings. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018165

[18]

Chunrong Chen, Zhimiao Fang. A note on semicontinuity to a parametric generalized Ky Fan inequality. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 779-784. doi: 10.3934/naco.2012.2.779

[19]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018138

[20]

Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]