• Previous Article
    Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
  • JIMO Home
  • This Issue
  • Next Article
    Neural network smoothing approximation method for stochastic variational inequality problems
April  2015, 11(2): 661-671. doi: 10.3934/jimo.2015.11.661

Stability of solution mapping for parametric symmetric vector equilibrium problems

1. 

College of Sciences, Chongqing Jiaotong University, Chongqing, 400074, China

2. 

College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067

Received  October 2013 Revised  May 2014 Published  September 2014

This paper is concerned with the stability for a parametric symmetric vector equilibrium problem. A parametric gap function for the parametric symmetric vector equilibrium problem is introduced and investigated. By virtue of this function, we establish the sufficient and necessary conditions for the Hausdorff lower semicontinuity of solution mapping to a parametric symmetric vector equilibrium problem. The results presented in this paper generalize and improve the corresponding results in the recent literature.
Citation: Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661
References:
[1]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.  doi: 10.1023/A:1017581009670.  Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[4]

B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982).  doi: 10.1007/978-3-0348-6328-5.  Google Scholar

[5]

C. Berge, Topological Spaces., Oliver and Boyd, (1963).   Google Scholar

[6]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.   Google Scholar

[7]

C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[8]

C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[9]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.  doi: 10.1016/j.camwa.2010.08.036.  Google Scholar

[10]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).   Google Scholar

[11]

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[12]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359.  doi: 10.1007/s10957-007-9309-7.  Google Scholar

[13]

A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099.  doi: 10.1016/j.jmaa.2005.09.079.  Google Scholar

[14]

J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708.  doi: 10.1016/S0022-247X(03)00479-7.  Google Scholar

[15]

F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.   Google Scholar

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[17]

N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343.  doi: 10.1016/S0895-7177(03)90045-8.  Google Scholar

[18]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[19]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: 10.1080/02331930412331330379.  Google Scholar

[20]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.  doi: 10.1007/s10957-008-9386-2.  Google Scholar

[21]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283.  doi: 10.1023/A:1014830925232.  Google Scholar

[22]

M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.   Google Scholar

[23]

W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909.  doi: 10.1016/j.jmaa.2011.09.052.  Google Scholar

[24]

J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[25]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807.  doi: 10.1016/j.camwa.2011.11.046.  Google Scholar

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317.  doi: 10.1007/s10957-011-9843-1.  Google Scholar

[27]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.   Google Scholar

show all references

References:
[1]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.  doi: 10.1023/A:1017581009670.  Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[4]

B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982).  doi: 10.1007/978-3-0348-6328-5.  Google Scholar

[5]

C. Berge, Topological Spaces., Oliver and Boyd, (1963).   Google Scholar

[6]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.   Google Scholar

[7]

C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[8]

C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[9]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.  doi: 10.1016/j.camwa.2010.08.036.  Google Scholar

[10]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).   Google Scholar

[11]

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[12]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359.  doi: 10.1007/s10957-007-9309-7.  Google Scholar

[13]

A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099.  doi: 10.1016/j.jmaa.2005.09.079.  Google Scholar

[14]

J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708.  doi: 10.1016/S0022-247X(03)00479-7.  Google Scholar

[15]

F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.   Google Scholar

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[17]

N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343.  doi: 10.1016/S0895-7177(03)90045-8.  Google Scholar

[18]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[19]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: 10.1080/02331930412331330379.  Google Scholar

[20]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.  doi: 10.1007/s10957-008-9386-2.  Google Scholar

[21]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283.  doi: 10.1023/A:1014830925232.  Google Scholar

[22]

M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.   Google Scholar

[23]

W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909.  doi: 10.1016/j.jmaa.2011.09.052.  Google Scholar

[24]

J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[25]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807.  doi: 10.1016/j.camwa.2011.11.046.  Google Scholar

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317.  doi: 10.1007/s10957-011-9843-1.  Google Scholar

[27]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.   Google Scholar

[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[14]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]