April  2015, 11(2): 673-683. doi: 10.3934/jimo.2015.11.673

Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

2. 

Department of Mathematics, Chongqing Normal University, Chongqing, 400047

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China

4. 

Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong, China

Received  August 2013 Revised  June 2014 Published  September 2014

In this paper, we characterize approximate solutions of vector optimization problems with set-valued maps. We gives several characterizations of generalized subconvexlike set-valued functions(see [10]), which is a generalization of nearly subconvexlike functions introduced in [34]. We present alternative theorem and derived scalarization theorems for approximate solutions with generalized subconvexlike set-valued maps. And then, Lagrange multiplier theorems under generalized Slater constraint qualification are established.
Citation: Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673
References:
[1]

T. Amahroq and A. Taa, On Lagrange Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[2]

S. Bolintineanu, Vector variational principles: $\epsilon$-efficiency and scalar stationarity,, Journal of Convex Analysis, 8 (2001), 71.   Google Scholar

[3]

J. Borwein, Proper efficient points for maximizations with respect to cones,, SIAM Journal of Control and Optimization, 15 (1977), 57.  doi: 10.1137/0315004.  Google Scholar

[4]

G. Y. Chen, X. X. Huang and S. H. Hou, General Ekeland's variational principle for set-valued mappings,, Journal of Optimization Theory and Applications, 106 (2000), 151.  doi: 10.1023/A:1004663208905.  Google Scholar

[5]

G. Y. Chen and W. D. Rong, Characterization of the benson proper efficiency for nonconvex vector optimization,, Journal of Optimization Theory and Applications, 98 (1998), 365.  doi: 10.1023/A:1022689517921.  Google Scholar

[6]

M. Ciligot-Travain, On Lagrange Kuhn-Tucker multipliers for Pareto optimization problems,, Numerical Functional Analysis and Optimization, 15 (1994), 689.  doi: 10.1080/01630569408816587.  Google Scholar

[7]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-pareto solutions in vector optimization with nonsolid cones in Banach spaces,, Journal of Optimization Theory and Applications, 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[8]

J. Dutta and V. Veterivel, On approximate minima in vector optimization,, Numerical Functional Analysis and Optimization, 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[9]

S. Helbig, One New Concept for $\epsilon$-efficency,, talk at, (1992).   Google Scholar

[10]

Y. Gao, S. H. Hou and X. M. Yang, Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems,, Jornal of Optimization Theory and application, 152 (2012), 97.  doi: 10.1007/s10957-011-9891-6.  Google Scholar

[11]

Y. Gao, X. M. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems,, Journal of Industrial and Management Optimization, 7 (2011), 483.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[12]

D. Gupta and A. Mehra, Two types of approximate saddle points,, Numerical Functional Analysis and Optimization, 29 (2008), 532.  doi: 10.1080/01630560802099274.  Google Scholar

[13]

C. Gutiérrez, L. Huerga and V. Novo, Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems,, Journal of Mathematical Analysis and Applications, 389 (2012), 1046.  doi: 10.1016/j.jmaa.2011.12.050.  Google Scholar

[14]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM Journal on Optimization, 17 (2006), 688.   Google Scholar

[15]

C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming,, Mathematical Methods of Operations Research, 64 (2006), 165.   Google Scholar

[16]

C. Gutiérrez, B. Jiménez and V. Novo, A set-valued Ekeland's variational principle in vector optimization,, SIAM Journal on Control And Optimization, 47 (2008), 883.   Google Scholar

[17]

C. Gutiérrez, B. Jiménez and V. Novo, Multiplier rules and saddle-point theorems for Helbig's approximate solutions in convex Pareto problems,, Journal of Global Optimization, 32 (2005), 367.  doi: 10.1007/s10898-004-5904-4.  Google Scholar

[18]

C. Gutiérrez, R. Lopez and V. Novo, Generalized $\epsilon$-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions,, Nonlinear Analysis, 72 (2010), 4331.  doi: 10.1016/j.na.2010.02.012.  Google Scholar

[19]

A. Hamel, An $\epsilon$-Lagrange multiplier rule for a mathematical programming problem on Banach spaces,, Optimization, 49 (2001), 137.  doi: 10.1080/02331930108844524.  Google Scholar

[20]

X. X. Huang, Optimality conditions and approximate optimality conditions in locally Lipschitz vector optimization,, Optimization, 51 (2002), 309.  doi: 10.1080/02331930290019440.  Google Scholar

[21]

Y. W. Huang, Optimality conditions for vector optimization with set-valued maps,, Bulletin of the Australian Mathematical Society 66 (2002), 66 (2002), 317.  doi: 10.1017/S0004972700040168.  Google Scholar

[22]

V. Jeyakumar, Convexlike alternative theorems and mathematical programming,, Optimization, 16 (1985), 643.  doi: 10.1080/02331938508843061.  Google Scholar

[23]

S. S. Kutateladze, Convex $\epsilon-$programming,, Dokl. Akad. Nauk SSSR, 245 (1979), 1048.   Google Scholar

[24]

Z. Li, A theorem of the alternative and its application to the optimization of set-valued maps,, Journal of Optimization Theory and Application, 100 (1999), 365.  doi: 10.1023/A:1021786303883.  Google Scholar

[25]

Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps,, Journal of Optimization Theory and Applications, 98 (1998), 623.  doi: 10.1023/A:1022676013609.  Google Scholar

[26]

Z. F. Li and S. Y. Wang, Lagrange multipliers and saddle points in multiobjective programming,, Journal of Optimization Theory and Applications, 83 (1994), 63.  doi: 10.1007/BF02191762.  Google Scholar

[27]

J. H. Qiu, Dual characterization and scalarization for Benson properly efficiency,, SIAM Journal on Optimization, 19 (2008), 144.  doi: 10.1137/060676465.  Google Scholar

[28]

J. H. Qiu, A generalized Ekeland vector variational principle and its applications in optimization,, Nonlinear Analysis, 71 (2009), 4705.  doi: 10.1016/j.na.2009.03.034.  Google Scholar

[29]

J. H. Qiu, Ekeland's variational principle in locally convex spaces and the density of extremal points,, Journal of Mathematical Analysis and Applications, 360 (2009), 317.  doi: 10.1016/j.jmaa.2009.06.054.  Google Scholar

[30]

P. H. Sach, Nearly subconvexlike set-valued maps and vector optimization problems,, Journal of Optimization Theory and Applications, 119 (2003), 335.  doi: 10.1023/B:JOTA.0000005449.20614.41.  Google Scholar

[31]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, In Fushimi, (1994), 497.   Google Scholar

[32]

D. J. White, Epsilon efficiency,, Journal of Optimization Theory and Applications, 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[33]

X. M. Yang, Alternative theorems and optimality conditions with weakened convexity,, Opsearch, 29 (1992), 125.   Google Scholar

[34]

X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, Journal of Optimization Theory and Applications, 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[35]

X. M. Yang, X. Q. Yang and G. Y. Chen, Theorems of the alternative and optimization with set-valued maps,, Journal of Optimization Theory and Applications, 107 (2000), 627.  doi: 10.1023/A:1026407517917.  Google Scholar

show all references

References:
[1]

T. Amahroq and A. Taa, On Lagrange Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[2]

S. Bolintineanu, Vector variational principles: $\epsilon$-efficiency and scalar stationarity,, Journal of Convex Analysis, 8 (2001), 71.   Google Scholar

[3]

J. Borwein, Proper efficient points for maximizations with respect to cones,, SIAM Journal of Control and Optimization, 15 (1977), 57.  doi: 10.1137/0315004.  Google Scholar

[4]

G. Y. Chen, X. X. Huang and S. H. Hou, General Ekeland's variational principle for set-valued mappings,, Journal of Optimization Theory and Applications, 106 (2000), 151.  doi: 10.1023/A:1004663208905.  Google Scholar

[5]

G. Y. Chen and W. D. Rong, Characterization of the benson proper efficiency for nonconvex vector optimization,, Journal of Optimization Theory and Applications, 98 (1998), 365.  doi: 10.1023/A:1022689517921.  Google Scholar

[6]

M. Ciligot-Travain, On Lagrange Kuhn-Tucker multipliers for Pareto optimization problems,, Numerical Functional Analysis and Optimization, 15 (1994), 689.  doi: 10.1080/01630569408816587.  Google Scholar

[7]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-pareto solutions in vector optimization with nonsolid cones in Banach spaces,, Journal of Optimization Theory and Applications, 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[8]

J. Dutta and V. Veterivel, On approximate minima in vector optimization,, Numerical Functional Analysis and Optimization, 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[9]

S. Helbig, One New Concept for $\epsilon$-efficency,, talk at, (1992).   Google Scholar

[10]

Y. Gao, S. H. Hou and X. M. Yang, Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems,, Jornal of Optimization Theory and application, 152 (2012), 97.  doi: 10.1007/s10957-011-9891-6.  Google Scholar

[11]

Y. Gao, X. M. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems,, Journal of Industrial and Management Optimization, 7 (2011), 483.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[12]

D. Gupta and A. Mehra, Two types of approximate saddle points,, Numerical Functional Analysis and Optimization, 29 (2008), 532.  doi: 10.1080/01630560802099274.  Google Scholar

[13]

C. Gutiérrez, L. Huerga and V. Novo, Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems,, Journal of Mathematical Analysis and Applications, 389 (2012), 1046.  doi: 10.1016/j.jmaa.2011.12.050.  Google Scholar

[14]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM Journal on Optimization, 17 (2006), 688.   Google Scholar

[15]

C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming,, Mathematical Methods of Operations Research, 64 (2006), 165.   Google Scholar

[16]

C. Gutiérrez, B. Jiménez and V. Novo, A set-valued Ekeland's variational principle in vector optimization,, SIAM Journal on Control And Optimization, 47 (2008), 883.   Google Scholar

[17]

C. Gutiérrez, B. Jiménez and V. Novo, Multiplier rules and saddle-point theorems for Helbig's approximate solutions in convex Pareto problems,, Journal of Global Optimization, 32 (2005), 367.  doi: 10.1007/s10898-004-5904-4.  Google Scholar

[18]

C. Gutiérrez, R. Lopez and V. Novo, Generalized $\epsilon$-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions,, Nonlinear Analysis, 72 (2010), 4331.  doi: 10.1016/j.na.2010.02.012.  Google Scholar

[19]

A. Hamel, An $\epsilon$-Lagrange multiplier rule for a mathematical programming problem on Banach spaces,, Optimization, 49 (2001), 137.  doi: 10.1080/02331930108844524.  Google Scholar

[20]

X. X. Huang, Optimality conditions and approximate optimality conditions in locally Lipschitz vector optimization,, Optimization, 51 (2002), 309.  doi: 10.1080/02331930290019440.  Google Scholar

[21]

Y. W. Huang, Optimality conditions for vector optimization with set-valued maps,, Bulletin of the Australian Mathematical Society 66 (2002), 66 (2002), 317.  doi: 10.1017/S0004972700040168.  Google Scholar

[22]

V. Jeyakumar, Convexlike alternative theorems and mathematical programming,, Optimization, 16 (1985), 643.  doi: 10.1080/02331938508843061.  Google Scholar

[23]

S. S. Kutateladze, Convex $\epsilon-$programming,, Dokl. Akad. Nauk SSSR, 245 (1979), 1048.   Google Scholar

[24]

Z. Li, A theorem of the alternative and its application to the optimization of set-valued maps,, Journal of Optimization Theory and Application, 100 (1999), 365.  doi: 10.1023/A:1021786303883.  Google Scholar

[25]

Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps,, Journal of Optimization Theory and Applications, 98 (1998), 623.  doi: 10.1023/A:1022676013609.  Google Scholar

[26]

Z. F. Li and S. Y. Wang, Lagrange multipliers and saddle points in multiobjective programming,, Journal of Optimization Theory and Applications, 83 (1994), 63.  doi: 10.1007/BF02191762.  Google Scholar

[27]

J. H. Qiu, Dual characterization and scalarization for Benson properly efficiency,, SIAM Journal on Optimization, 19 (2008), 144.  doi: 10.1137/060676465.  Google Scholar

[28]

J. H. Qiu, A generalized Ekeland vector variational principle and its applications in optimization,, Nonlinear Analysis, 71 (2009), 4705.  doi: 10.1016/j.na.2009.03.034.  Google Scholar

[29]

J. H. Qiu, Ekeland's variational principle in locally convex spaces and the density of extremal points,, Journal of Mathematical Analysis and Applications, 360 (2009), 317.  doi: 10.1016/j.jmaa.2009.06.054.  Google Scholar

[30]

P. H. Sach, Nearly subconvexlike set-valued maps and vector optimization problems,, Journal of Optimization Theory and Applications, 119 (2003), 335.  doi: 10.1023/B:JOTA.0000005449.20614.41.  Google Scholar

[31]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, In Fushimi, (1994), 497.   Google Scholar

[32]

D. J. White, Epsilon efficiency,, Journal of Optimization Theory and Applications, 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[33]

X. M. Yang, Alternative theorems and optimality conditions with weakened convexity,, Opsearch, 29 (1992), 125.   Google Scholar

[34]

X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, Journal of Optimization Theory and Applications, 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[35]

X. M. Yang, X. Q. Yang and G. Y. Chen, Theorems of the alternative and optimization with set-valued maps,, Journal of Optimization Theory and Applications, 107 (2000), 627.  doi: 10.1023/A:1026407517917.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]