- Previous Article
- JIMO Home
- This Issue
-
Next Article
Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
Two-machine scheduling with periodic availability constraints to minimize makespan
1. | Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai 200237, China, China |
References:
[1] |
T. C. E. Cheng and G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint,, Operation Research Letters, 26 (2000), 223.
doi: 10.1016/S0167-6377(00)00033-X. |
[2] |
R. L. Graham, Bounds on multiprocessing timing anomalies,, SIAM Journal on Applied Mathematics, 17 (1969), 416.
doi: 10.1137/0117039. |
[3] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan,, Computer & Operations Research, 34 (2007), 1764.
doi: 10.1016/j.cor.2005.05.034. |
[4] |
C. J. Liao, D. L. Shyur and C. H. Lin, Makespan minimization for two parallel machines with an availability constraint,, European journal of operational Research, 160 (2005), 445.
doi: 10.1016/j.ejor.2003.08.034. |
[5] |
C. J. Liao and W. J. Chen, Single-machine scheduling with periodic maintenance and nonresumable jobs,, Computers & operations Research, 30 (2003), 1335.
doi: 10.1016/S0305-0548(02)00074-6. |
[6] |
C. Y. Lee, Machine scheduling with an availability constraint,, Journal of Global optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[7] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271.
doi: 10.3934/jimo.2012.8.271. |
[8] |
G. Wang and T. C. E. Cheng, Heuristics for two-machine no-wait flowshop scheduling with an availability constraint,, Information Processing Letters, 80 (2001), 305.
doi: 10.1016/S0020-0190(01)00181-8. |
[9] |
D. H. Xu, Z. M. Cheng, Y. Q. Yin and H. X. Li, Makespan minimization for two parallel machines scheduling with a periodic availability constraint,, Computer & Operations Research, 36 (2009), 1809.
doi: 10.1016/j.cor.2008.05.001. |
[10] |
M. Y. Yue, A simple proof of the inequality $FFD(L)\leq \frac{11}{9}OPT(L)+1,\forall L$ for the FFD Bin-Packing algorithm,, Acta Mathematics Application Sinica, 7 (1991), 321.
doi: 10.1007/BF02009683. |
show all references
References:
[1] |
T. C. E. Cheng and G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint,, Operation Research Letters, 26 (2000), 223.
doi: 10.1016/S0167-6377(00)00033-X. |
[2] |
R. L. Graham, Bounds on multiprocessing timing anomalies,, SIAM Journal on Applied Mathematics, 17 (1969), 416.
doi: 10.1137/0117039. |
[3] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan,, Computer & Operations Research, 34 (2007), 1764.
doi: 10.1016/j.cor.2005.05.034. |
[4] |
C. J. Liao, D. L. Shyur and C. H. Lin, Makespan minimization for two parallel machines with an availability constraint,, European journal of operational Research, 160 (2005), 445.
doi: 10.1016/j.ejor.2003.08.034. |
[5] |
C. J. Liao and W. J. Chen, Single-machine scheduling with periodic maintenance and nonresumable jobs,, Computers & operations Research, 30 (2003), 1335.
doi: 10.1016/S0305-0548(02)00074-6. |
[6] |
C. Y. Lee, Machine scheduling with an availability constraint,, Journal of Global optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[7] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271.
doi: 10.3934/jimo.2012.8.271. |
[8] |
G. Wang and T. C. E. Cheng, Heuristics for two-machine no-wait flowshop scheduling with an availability constraint,, Information Processing Letters, 80 (2001), 305.
doi: 10.1016/S0020-0190(01)00181-8. |
[9] |
D. H. Xu, Z. M. Cheng, Y. Q. Yin and H. X. Li, Makespan minimization for two parallel machines scheduling with a periodic availability constraint,, Computer & Operations Research, 36 (2009), 1809.
doi: 10.1016/j.cor.2008.05.001. |
[10] |
M. Y. Yue, A simple proof of the inequality $FFD(L)\leq \frac{11}{9}OPT(L)+1,\forall L$ for the FFD Bin-Packing algorithm,, Acta Mathematics Application Sinica, 7 (1991), 321.
doi: 10.1007/BF02009683. |
[1] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[2] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[3] |
Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021001 |
[4] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[5] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[6] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[7] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[8] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[9] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[10] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[11] |
Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088 |
[12] |
Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007 |
[13] |
Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087 |
[14] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]