-
Previous Article
Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy
- JIMO Home
- This Issue
- Next Article
Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems
1. | School of Mathematics, Chongqing Normal University, Chongqing 400047, China, China |
References:
[1] |
Q. H. Ansari, S. Schaible and J. C. Yao, Systems of Vector Equilibrium problems and its applications,, J. Optim. Theory and Appl., 107 (2000), 547.
doi: 10.1023/A:1026495115191. |
[2] |
Q. H. Ansari and J. C. Yao, A fixed-point theorem and its applications to the Systems of variational inequalities,, Bull. Austr. Math. Soc., 59 (1999), 433.
doi: 10.1017/S0004972700033116. |
[3] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analisis,, John Wiley & Sons, (1984).
|
[4] |
E. Bednarczuk, Well-posedness of vector optimization problems,, in Lecture Notes in Economics and Mathematical Systems, 294 (1987), 51.
doi: 10.1007/978-3-642-46618-2_2. |
[5] |
M. Bianchi, Pseudo P-monotone Operators and Variational Inequalities,, Report 6, (1993). Google Scholar |
[6] |
L. C. Ceng and J. C. Yao, Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems,, Nonlinear Analysis, 69 (2008), 4585.
doi: 10.1016/j.na.2007.11.015. |
[7] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization, Set-valued and Variational Analysis,, Lecture notes in economics and mathematical systems. Springer, (2005).
|
[8] |
G. Cohen and F. Chaplais, Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms,, J. Optim. Theory and Appl., 59 (1988), 369.
doi: 10.1007/BF00940305. |
[9] |
G. P. Crespi, A. Guerraggio and M. Rocca, Well Posedness in Vector Optimization Problems and Vector Variational Inequalities,, J. Optim. Theory and Appl., 132 (2007), 213.
doi: 10.1007/s10957-006-9144-2. |
[10] |
G. P. Crespi, M. Papalia and M. Rocca, Extended Well-Posedness of Quasiconvex Vector Optimization Problems,, J. Optim. Theory and Appl., 141 (2009), 285.
doi: 10.1007/s10957-008-9494-z. |
[11] |
S. Deng, Coercivity properties and well-posedness in vector optimization,, RAIRO Oper. Res., 37 (2003), 195.
doi: 10.1051/ro:2003021. |
[12] |
A. L. Dontchev and T. Zolezzi, Well-posed Optimization Problems,, Springer-Verlag, (1993).
|
[13] |
F. Giannessi, Theorems alternative, Quadratic programs, and complementarity problems,, In variational inequalities and complementarity problems, (1980), 151.
|
[14] |
Y. P. Fang and R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions,, Computers and Mathematics with Applications, 53 (2007), 1306.
doi: 10.1016/j.camwa.2006.09.009. |
[15] |
Y. P. Fang, N. J. Huang and J. C. Yao, Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems,, J. Glob. Optim., 41 (2008), 117.
doi: 10.1007/s10898-007-9169-6. |
[16] |
M. Furi and A. Vignoli, About well-posed optimization problems for functions in metric spaces,, J. Optim. Theory Appl., 5 (1970), 223.
|
[17] |
R. Hu and Y. P. Fang, Levitin-Polyak well-posedness of variational inequalities,, Nonlinear Analysis, 72 (2010), 373.
doi: 10.1016/j.na.2009.06.071. |
[18] |
X. X. Huang, Extended well-posed properties of vector optimization problems,, J. Optim. Theory and Appl., 106 (2000), 165.
doi: 10.1023/A:1004615325743. |
[19] |
X. X. Huang, Extended and strongly extended well-posed properties of set-valued optimization problems,, Math. Meth. Oper. Res., 53 (2001), 101.
doi: 10.1007/s001860000100. |
[20] |
X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization,, SIAM J. Optim., 17 (2006), 243.
doi: 10.1137/040614943. |
[21] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector optimization problems,, J. Glob. Optim., 37 (2007), 287.
doi: 10.1007/s10898-006-9050-z. |
[22] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of vector variational inequality problems with functional constraints,, Numer. Funct. Anal. Optim., 31 (2010), 440.
doi: 10.1080/01630563.2010.485296. |
[23] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequalities problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.
doi: 10.3934/jimo.2007.3.671. |
[24] |
X. X. Huang, X. Q. Yang and D. L. Zhu, Levitin-Polyak well-posedness of variational inequalities problems with functional constraints,, J. Glob. Optim., 44 (2009), 159.
doi: 10.1007/s10898-008-9310-1. |
[25] |
A. S. Konsulova and J. P. Revalski, Constrained convex optomization problems-well-posedness and stability,, Numer. Funct. Anal. Optim., 15 (1994), 889.
doi: 10.1080/01630569408816598. |
[26] |
C. Kuratowski, Topologie, Panstwove Wydanictwo Naukowe,, Warszawa, (1952). Google Scholar |
[27] |
C. S. Lalitha and G. Bhatia, well-posedness for variational inequality problems with generalized monotone set-valued maps,, Numer. Funct. Anal. Optim., 30 (2009), 548.
doi: 10.1080/01630560902987972. |
[28] |
E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional extremum problem,, Soviet Mathematics Doklady, 7 (1966), 764. Google Scholar |
[29] |
M. H. Li, S. J. Li and W. Y. Zhang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems,, J. Ind. Manag. Optim., 5 (2009), 683.
doi: 10.3934/jimo.2009.5.683. |
[30] |
M. B. Lignola and J. Morgan, Approximating solutions and $\alpha$-well-posedness for variational inequalities and Nash equilibria,, in Decision and Control in Management Science, 4 (2002), 367.
doi: 10.1007/978-1-4757-3561-1_20. |
[31] |
P. Loridan, Well-posed vector optimization, recent developments in well-posed variational problems,, Mathematics and its Applications, 331 (1995), 171.
|
[32] |
D. T. Luc, Theory of Vector Optimization,, Springer, (1989).
|
[33] |
R. Lucchetti, Well-posedness towards vector optimization},, Lecture Notes in Economics and Mathematical Systems, 294 (1987), 194.
doi: 10.1007/978-3-642-46618-2_13. |
[34] |
R. Lucchetti, Convexity and Well-posed Problems,, springer, (2006).
|
[35] |
R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities,, Numer. Funct. Anal. Optim., 3 (1981), 461.
doi: 10.1080/01630568108816100. |
[36] |
J. S. Pang, Asymmetric variational inequality problems over product sets: Applications and iterative methods,, Mathematical Programming, 31 (1985), 206.
doi: 10.1007/BF02591749. |
[37] |
A. N. Tykhonov, On the stability of the functional optimization problem,, USSRJ. Comput. Math. Math. Phys., 6 (1966), 28.
doi: 10.1016/0041-5553(66)90003-6. |
[38] |
Z. Xu, D. L. Zhu and X. X. Huang, Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints,, Math. Meth. Oper. Res., 67 (2008), 505.
doi: 10.1007/s00186-007-0200-y. |
[39] |
T. Zolezzi, Extended well-posedness of optimization problems,, J. Optim. Theory Appl., 91 (1996), 257.
doi: 10.1007/BF02192292. |
show all references
References:
[1] |
Q. H. Ansari, S. Schaible and J. C. Yao, Systems of Vector Equilibrium problems and its applications,, J. Optim. Theory and Appl., 107 (2000), 547.
doi: 10.1023/A:1026495115191. |
[2] |
Q. H. Ansari and J. C. Yao, A fixed-point theorem and its applications to the Systems of variational inequalities,, Bull. Austr. Math. Soc., 59 (1999), 433.
doi: 10.1017/S0004972700033116. |
[3] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analisis,, John Wiley & Sons, (1984).
|
[4] |
E. Bednarczuk, Well-posedness of vector optimization problems,, in Lecture Notes in Economics and Mathematical Systems, 294 (1987), 51.
doi: 10.1007/978-3-642-46618-2_2. |
[5] |
M. Bianchi, Pseudo P-monotone Operators and Variational Inequalities,, Report 6, (1993). Google Scholar |
[6] |
L. C. Ceng and J. C. Yao, Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems,, Nonlinear Analysis, 69 (2008), 4585.
doi: 10.1016/j.na.2007.11.015. |
[7] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization, Set-valued and Variational Analysis,, Lecture notes in economics and mathematical systems. Springer, (2005).
|
[8] |
G. Cohen and F. Chaplais, Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms,, J. Optim. Theory and Appl., 59 (1988), 369.
doi: 10.1007/BF00940305. |
[9] |
G. P. Crespi, A. Guerraggio and M. Rocca, Well Posedness in Vector Optimization Problems and Vector Variational Inequalities,, J. Optim. Theory and Appl., 132 (2007), 213.
doi: 10.1007/s10957-006-9144-2. |
[10] |
G. P. Crespi, M. Papalia and M. Rocca, Extended Well-Posedness of Quasiconvex Vector Optimization Problems,, J. Optim. Theory and Appl., 141 (2009), 285.
doi: 10.1007/s10957-008-9494-z. |
[11] |
S. Deng, Coercivity properties and well-posedness in vector optimization,, RAIRO Oper. Res., 37 (2003), 195.
doi: 10.1051/ro:2003021. |
[12] |
A. L. Dontchev and T. Zolezzi, Well-posed Optimization Problems,, Springer-Verlag, (1993).
|
[13] |
F. Giannessi, Theorems alternative, Quadratic programs, and complementarity problems,, In variational inequalities and complementarity problems, (1980), 151.
|
[14] |
Y. P. Fang and R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions,, Computers and Mathematics with Applications, 53 (2007), 1306.
doi: 10.1016/j.camwa.2006.09.009. |
[15] |
Y. P. Fang, N. J. Huang and J. C. Yao, Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems,, J. Glob. Optim., 41 (2008), 117.
doi: 10.1007/s10898-007-9169-6. |
[16] |
M. Furi and A. Vignoli, About well-posed optimization problems for functions in metric spaces,, J. Optim. Theory Appl., 5 (1970), 223.
|
[17] |
R. Hu and Y. P. Fang, Levitin-Polyak well-posedness of variational inequalities,, Nonlinear Analysis, 72 (2010), 373.
doi: 10.1016/j.na.2009.06.071. |
[18] |
X. X. Huang, Extended well-posed properties of vector optimization problems,, J. Optim. Theory and Appl., 106 (2000), 165.
doi: 10.1023/A:1004615325743. |
[19] |
X. X. Huang, Extended and strongly extended well-posed properties of set-valued optimization problems,, Math. Meth. Oper. Res., 53 (2001), 101.
doi: 10.1007/s001860000100. |
[20] |
X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization,, SIAM J. Optim., 17 (2006), 243.
doi: 10.1137/040614943. |
[21] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector optimization problems,, J. Glob. Optim., 37 (2007), 287.
doi: 10.1007/s10898-006-9050-z. |
[22] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of vector variational inequality problems with functional constraints,, Numer. Funct. Anal. Optim., 31 (2010), 440.
doi: 10.1080/01630563.2010.485296. |
[23] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequalities problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.
doi: 10.3934/jimo.2007.3.671. |
[24] |
X. X. Huang, X. Q. Yang and D. L. Zhu, Levitin-Polyak well-posedness of variational inequalities problems with functional constraints,, J. Glob. Optim., 44 (2009), 159.
doi: 10.1007/s10898-008-9310-1. |
[25] |
A. S. Konsulova and J. P. Revalski, Constrained convex optomization problems-well-posedness and stability,, Numer. Funct. Anal. Optim., 15 (1994), 889.
doi: 10.1080/01630569408816598. |
[26] |
C. Kuratowski, Topologie, Panstwove Wydanictwo Naukowe,, Warszawa, (1952). Google Scholar |
[27] |
C. S. Lalitha and G. Bhatia, well-posedness for variational inequality problems with generalized monotone set-valued maps,, Numer. Funct. Anal. Optim., 30 (2009), 548.
doi: 10.1080/01630560902987972. |
[28] |
E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional extremum problem,, Soviet Mathematics Doklady, 7 (1966), 764. Google Scholar |
[29] |
M. H. Li, S. J. Li and W. Y. Zhang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems,, J. Ind. Manag. Optim., 5 (2009), 683.
doi: 10.3934/jimo.2009.5.683. |
[30] |
M. B. Lignola and J. Morgan, Approximating solutions and $\alpha$-well-posedness for variational inequalities and Nash equilibria,, in Decision and Control in Management Science, 4 (2002), 367.
doi: 10.1007/978-1-4757-3561-1_20. |
[31] |
P. Loridan, Well-posed vector optimization, recent developments in well-posed variational problems,, Mathematics and its Applications, 331 (1995), 171.
|
[32] |
D. T. Luc, Theory of Vector Optimization,, Springer, (1989).
|
[33] |
R. Lucchetti, Well-posedness towards vector optimization},, Lecture Notes in Economics and Mathematical Systems, 294 (1987), 194.
doi: 10.1007/978-3-642-46618-2_13. |
[34] |
R. Lucchetti, Convexity and Well-posed Problems,, springer, (2006).
|
[35] |
R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities,, Numer. Funct. Anal. Optim., 3 (1981), 461.
doi: 10.1080/01630568108816100. |
[36] |
J. S. Pang, Asymmetric variational inequality problems over product sets: Applications and iterative methods,, Mathematical Programming, 31 (1985), 206.
doi: 10.1007/BF02591749. |
[37] |
A. N. Tykhonov, On the stability of the functional optimization problem,, USSRJ. Comput. Math. Math. Phys., 6 (1966), 28.
doi: 10.1016/0041-5553(66)90003-6. |
[38] |
Z. Xu, D. L. Zhu and X. X. Huang, Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints,, Math. Meth. Oper. Res., 67 (2008), 505.
doi: 10.1007/s00186-007-0200-y. |
[39] |
T. Zolezzi, Extended well-posedness of optimization problems,, J. Optim. Theory Appl., 91 (1996), 257.
doi: 10.1007/BF02192292. |
[1] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[2] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[3] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[4] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[5] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[6] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[7] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[8] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[9] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[10] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[11] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[12] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[13] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[14] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[15] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[16] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[17] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[18] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[19] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[20] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]