July  2015, 11(3): 701-714. doi: 10.3934/jimo.2015.11.701

Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems

1. 

School of Mathematics, Chongqing Normal University, Chongqing 400047, China, China

Received  February 2012 Revised  May 2014 Published  October 2014

In this paper, we introduce two types of Levitin-Polyak well-posedness for a system of generalized vector variational inequality problems. By means of a gap function of the system of generalized vector variational inequality problems, we establish equivalence between the two types of Levitin-Polyak well-posedness of the system of generalized vector variational inequality problems and the corresponding well-posednesses of the minimization problems. We also present some metric characterizations for the two types of Levitin-Polyak well-posedness of the system of generalized vector variational inequality problems. The results in this paper generalize, extend and improve some known results in the literature.
Citation: Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701
References:
[1]

Q. H. Ansari, S. Schaible and J. C. Yao, Systems of Vector Equilibrium problems and its applications,, J. Optim. Theory and Appl., 107 (2000), 547.  doi: 10.1023/A:1026495115191.  Google Scholar

[2]

Q. H. Ansari and J. C. Yao, A fixed-point theorem and its applications to the Systems of variational inequalities,, Bull. Austr. Math. Soc., 59 (1999), 433.  doi: 10.1017/S0004972700033116.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analisis,, John Wiley & Sons, (1984).   Google Scholar

[4]

E. Bednarczuk, Well-posedness of vector optimization problems,, in Lecture Notes in Economics and Mathematical Systems, 294 (1987), 51.  doi: 10.1007/978-3-642-46618-2_2.  Google Scholar

[5]

M. Bianchi, Pseudo P-monotone Operators and Variational Inequalities,, Report 6, (1993).   Google Scholar

[6]

L. C. Ceng and J. C. Yao, Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems,, Nonlinear Analysis, 69 (2008), 4585.  doi: 10.1016/j.na.2007.11.015.  Google Scholar

[7]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization, Set-valued and Variational Analysis,, Lecture notes in economics and mathematical systems. Springer, (2005).   Google Scholar

[8]

G. Cohen and F. Chaplais, Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms,, J. Optim. Theory and Appl., 59 (1988), 369.  doi: 10.1007/BF00940305.  Google Scholar

[9]

G. P. Crespi, A. Guerraggio and M. Rocca, Well Posedness in Vector Optimization Problems and Vector Variational Inequalities,, J. Optim. Theory and Appl., 132 (2007), 213.  doi: 10.1007/s10957-006-9144-2.  Google Scholar

[10]

G. P. Crespi, M. Papalia and M. Rocca, Extended Well-Posedness of Quasiconvex Vector Optimization Problems,, J. Optim. Theory and Appl., 141 (2009), 285.  doi: 10.1007/s10957-008-9494-z.  Google Scholar

[11]

S. Deng, Coercivity properties and well-posedness in vector optimization,, RAIRO Oper. Res., 37 (2003), 195.  doi: 10.1051/ro:2003021.  Google Scholar

[12]

A. L. Dontchev and T. Zolezzi, Well-posed Optimization Problems,, Springer-Verlag, (1993).   Google Scholar

[13]

F. Giannessi, Theorems alternative, Quadratic programs, and complementarity problems,, In variational inequalities and complementarity problems, (1980), 151.   Google Scholar

[14]

Y. P. Fang and R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions,, Computers and Mathematics with Applications, 53 (2007), 1306.  doi: 10.1016/j.camwa.2006.09.009.  Google Scholar

[15]

Y. P. Fang, N. J. Huang and J. C. Yao, Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems,, J. Glob. Optim., 41 (2008), 117.  doi: 10.1007/s10898-007-9169-6.  Google Scholar

[16]

M. Furi and A. Vignoli, About well-posed optimization problems for functions in metric spaces,, J. Optim. Theory Appl., 5 (1970), 223.   Google Scholar

[17]

R. Hu and Y. P. Fang, Levitin-Polyak well-posedness of variational inequalities,, Nonlinear Analysis, 72 (2010), 373.  doi: 10.1016/j.na.2009.06.071.  Google Scholar

[18]

X. X. Huang, Extended well-posed properties of vector optimization problems,, J. Optim. Theory and Appl., 106 (2000), 165.  doi: 10.1023/A:1004615325743.  Google Scholar

[19]

X. X. Huang, Extended and strongly extended well-posed properties of set-valued optimization problems,, Math. Meth. Oper. Res., 53 (2001), 101.  doi: 10.1007/s001860000100.  Google Scholar

[20]

X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization,, SIAM J. Optim., 17 (2006), 243.  doi: 10.1137/040614943.  Google Scholar

[21]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector optimization problems,, J. Glob. Optim., 37 (2007), 287.  doi: 10.1007/s10898-006-9050-z.  Google Scholar

[22]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of vector variational inequality problems with functional constraints,, Numer. Funct. Anal. Optim., 31 (2010), 440.  doi: 10.1080/01630563.2010.485296.  Google Scholar

[23]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequalities problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.  doi: 10.3934/jimo.2007.3.671.  Google Scholar

[24]

X. X. Huang, X. Q. Yang and D. L. Zhu, Levitin-Polyak well-posedness of variational inequalities problems with functional constraints,, J. Glob. Optim., 44 (2009), 159.  doi: 10.1007/s10898-008-9310-1.  Google Scholar

[25]

A. S. Konsulova and J. P. Revalski, Constrained convex optomization problems-well-posedness and stability,, Numer. Funct. Anal. Optim., 15 (1994), 889.  doi: 10.1080/01630569408816598.  Google Scholar

[26]

C. Kuratowski, Topologie, Panstwove Wydanictwo Naukowe,, Warszawa, (1952).   Google Scholar

[27]

C. S. Lalitha and G. Bhatia, well-posedness for variational inequality problems with generalized monotone set-valued maps,, Numer. Funct. Anal. Optim., 30 (2009), 548.  doi: 10.1080/01630560902987972.  Google Scholar

[28]

E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional extremum problem,, Soviet Mathematics Doklady, 7 (1966), 764.   Google Scholar

[29]

M. H. Li, S. J. Li and W. Y. Zhang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems,, J. Ind. Manag. Optim., 5 (2009), 683.  doi: 10.3934/jimo.2009.5.683.  Google Scholar

[30]

M. B. Lignola and J. Morgan, Approximating solutions and $\alpha$-well-posedness for variational inequalities and Nash equilibria,, in Decision and Control in Management Science, 4 (2002), 367.  doi: 10.1007/978-1-4757-3561-1_20.  Google Scholar

[31]

P. Loridan, Well-posed vector optimization, recent developments in well-posed variational problems,, Mathematics and its Applications, 331 (1995), 171.   Google Scholar

[32]

D. T. Luc, Theory of Vector Optimization,, Springer, (1989).   Google Scholar

[33]

R. Lucchetti, Well-posedness towards vector optimization},, Lecture Notes in Economics and Mathematical Systems, 294 (1987), 194.  doi: 10.1007/978-3-642-46618-2_13.  Google Scholar

[34]

R. Lucchetti, Convexity and Well-posed Problems,, springer, (2006).   Google Scholar

[35]

R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities,, Numer. Funct. Anal. Optim., 3 (1981), 461.  doi: 10.1080/01630568108816100.  Google Scholar

[36]

J. S. Pang, Asymmetric variational inequality problems over product sets: Applications and iterative methods,, Mathematical Programming, 31 (1985), 206.  doi: 10.1007/BF02591749.  Google Scholar

[37]

A. N. Tykhonov, On the stability of the functional optimization problem,, USSRJ. Comput. Math. Math. Phys., 6 (1966), 28.  doi: 10.1016/0041-5553(66)90003-6.  Google Scholar

[38]

Z. Xu, D. L. Zhu and X. X. Huang, Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints,, Math. Meth. Oper. Res., 67 (2008), 505.  doi: 10.1007/s00186-007-0200-y.  Google Scholar

[39]

T. Zolezzi, Extended well-posedness of optimization problems,, J. Optim. Theory Appl., 91 (1996), 257.  doi: 10.1007/BF02192292.  Google Scholar

show all references

References:
[1]

Q. H. Ansari, S. Schaible and J. C. Yao, Systems of Vector Equilibrium problems and its applications,, J. Optim. Theory and Appl., 107 (2000), 547.  doi: 10.1023/A:1026495115191.  Google Scholar

[2]

Q. H. Ansari and J. C. Yao, A fixed-point theorem and its applications to the Systems of variational inequalities,, Bull. Austr. Math. Soc., 59 (1999), 433.  doi: 10.1017/S0004972700033116.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analisis,, John Wiley & Sons, (1984).   Google Scholar

[4]

E. Bednarczuk, Well-posedness of vector optimization problems,, in Lecture Notes in Economics and Mathematical Systems, 294 (1987), 51.  doi: 10.1007/978-3-642-46618-2_2.  Google Scholar

[5]

M. Bianchi, Pseudo P-monotone Operators and Variational Inequalities,, Report 6, (1993).   Google Scholar

[6]

L. C. Ceng and J. C. Yao, Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems,, Nonlinear Analysis, 69 (2008), 4585.  doi: 10.1016/j.na.2007.11.015.  Google Scholar

[7]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization, Set-valued and Variational Analysis,, Lecture notes in economics and mathematical systems. Springer, (2005).   Google Scholar

[8]

G. Cohen and F. Chaplais, Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms,, J. Optim. Theory and Appl., 59 (1988), 369.  doi: 10.1007/BF00940305.  Google Scholar

[9]

G. P. Crespi, A. Guerraggio and M. Rocca, Well Posedness in Vector Optimization Problems and Vector Variational Inequalities,, J. Optim. Theory and Appl., 132 (2007), 213.  doi: 10.1007/s10957-006-9144-2.  Google Scholar

[10]

G. P. Crespi, M. Papalia and M. Rocca, Extended Well-Posedness of Quasiconvex Vector Optimization Problems,, J. Optim. Theory and Appl., 141 (2009), 285.  doi: 10.1007/s10957-008-9494-z.  Google Scholar

[11]

S. Deng, Coercivity properties and well-posedness in vector optimization,, RAIRO Oper. Res., 37 (2003), 195.  doi: 10.1051/ro:2003021.  Google Scholar

[12]

A. L. Dontchev and T. Zolezzi, Well-posed Optimization Problems,, Springer-Verlag, (1993).   Google Scholar

[13]

F. Giannessi, Theorems alternative, Quadratic programs, and complementarity problems,, In variational inequalities and complementarity problems, (1980), 151.   Google Scholar

[14]

Y. P. Fang and R. Hu, Parametric well-posedness for variational inequalities defined by bifunctions,, Computers and Mathematics with Applications, 53 (2007), 1306.  doi: 10.1016/j.camwa.2006.09.009.  Google Scholar

[15]

Y. P. Fang, N. J. Huang and J. C. Yao, Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems,, J. Glob. Optim., 41 (2008), 117.  doi: 10.1007/s10898-007-9169-6.  Google Scholar

[16]

M. Furi and A. Vignoli, About well-posed optimization problems for functions in metric spaces,, J. Optim. Theory Appl., 5 (1970), 223.   Google Scholar

[17]

R. Hu and Y. P. Fang, Levitin-Polyak well-posedness of variational inequalities,, Nonlinear Analysis, 72 (2010), 373.  doi: 10.1016/j.na.2009.06.071.  Google Scholar

[18]

X. X. Huang, Extended well-posed properties of vector optimization problems,, J. Optim. Theory and Appl., 106 (2000), 165.  doi: 10.1023/A:1004615325743.  Google Scholar

[19]

X. X. Huang, Extended and strongly extended well-posed properties of set-valued optimization problems,, Math. Meth. Oper. Res., 53 (2001), 101.  doi: 10.1007/s001860000100.  Google Scholar

[20]

X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization,, SIAM J. Optim., 17 (2006), 243.  doi: 10.1137/040614943.  Google Scholar

[21]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector optimization problems,, J. Glob. Optim., 37 (2007), 287.  doi: 10.1007/s10898-006-9050-z.  Google Scholar

[22]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of vector variational inequality problems with functional constraints,, Numer. Funct. Anal. Optim., 31 (2010), 440.  doi: 10.1080/01630563.2010.485296.  Google Scholar

[23]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequalities problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.  doi: 10.3934/jimo.2007.3.671.  Google Scholar

[24]

X. X. Huang, X. Q. Yang and D. L. Zhu, Levitin-Polyak well-posedness of variational inequalities problems with functional constraints,, J. Glob. Optim., 44 (2009), 159.  doi: 10.1007/s10898-008-9310-1.  Google Scholar

[25]

A. S. Konsulova and J. P. Revalski, Constrained convex optomization problems-well-posedness and stability,, Numer. Funct. Anal. Optim., 15 (1994), 889.  doi: 10.1080/01630569408816598.  Google Scholar

[26]

C. Kuratowski, Topologie, Panstwove Wydanictwo Naukowe,, Warszawa, (1952).   Google Scholar

[27]

C. S. Lalitha and G. Bhatia, well-posedness for variational inequality problems with generalized monotone set-valued maps,, Numer. Funct. Anal. Optim., 30 (2009), 548.  doi: 10.1080/01630560902987972.  Google Scholar

[28]

E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional extremum problem,, Soviet Mathematics Doklady, 7 (1966), 764.   Google Scholar

[29]

M. H. Li, S. J. Li and W. Y. Zhang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems,, J. Ind. Manag. Optim., 5 (2009), 683.  doi: 10.3934/jimo.2009.5.683.  Google Scholar

[30]

M. B. Lignola and J. Morgan, Approximating solutions and $\alpha$-well-posedness for variational inequalities and Nash equilibria,, in Decision and Control in Management Science, 4 (2002), 367.  doi: 10.1007/978-1-4757-3561-1_20.  Google Scholar

[31]

P. Loridan, Well-posed vector optimization, recent developments in well-posed variational problems,, Mathematics and its Applications, 331 (1995), 171.   Google Scholar

[32]

D. T. Luc, Theory of Vector Optimization,, Springer, (1989).   Google Scholar

[33]

R. Lucchetti, Well-posedness towards vector optimization},, Lecture Notes in Economics and Mathematical Systems, 294 (1987), 194.  doi: 10.1007/978-3-642-46618-2_13.  Google Scholar

[34]

R. Lucchetti, Convexity and Well-posed Problems,, springer, (2006).   Google Scholar

[35]

R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities,, Numer. Funct. Anal. Optim., 3 (1981), 461.  doi: 10.1080/01630568108816100.  Google Scholar

[36]

J. S. Pang, Asymmetric variational inequality problems over product sets: Applications and iterative methods,, Mathematical Programming, 31 (1985), 206.  doi: 10.1007/BF02591749.  Google Scholar

[37]

A. N. Tykhonov, On the stability of the functional optimization problem,, USSRJ. Comput. Math. Math. Phys., 6 (1966), 28.  doi: 10.1016/0041-5553(66)90003-6.  Google Scholar

[38]

Z. Xu, D. L. Zhu and X. X. Huang, Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints,, Math. Meth. Oper. Res., 67 (2008), 505.  doi: 10.1007/s00186-007-0200-y.  Google Scholar

[39]

T. Zolezzi, Extended well-posedness of optimization problems,, J. Optim. Theory Appl., 91 (1996), 257.  doi: 10.1007/BF02192292.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[7]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[8]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[9]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[10]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[11]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[12]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[13]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[14]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[15]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[16]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[17]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[18]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[19]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[20]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]