• Previous Article
    An inexact semismooth Newton method for variational inequality with symmetric cone constraints
  • JIMO Home
  • This Issue
  • Next Article
    Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems
July  2015, 11(3): 715-731. doi: 10.3934/jimo.2015.11.715

Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy

1. 

College of Science, Yanshan University, Qinhuangdao, 066004, China, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501

Received  February 2013 Revised  June 2014 Published  October 2014

In this paper, we consider the balking behavior of customers in an M/G/1 queueing system with a removable server under N-policy, where the server may be turned off when no customers are present, and be turned on when the queue length reaches size $N$. Arriving customers decide whether to join the system or balk, based on a linear reward-cost structure that incorporates their desire for service, as well as their unwillingness for waiting. For the unobservable and partially observable queues, we first analyze the stationary behavior of the system; then derive the equilibrium mixed strategies and compare them to the socially optimal strategies. We take the number $N$ as a decision variable and discuss the optimal operations policy in equilibrium states. Finally, we present two examples to demonstrate some of the phenomena in the considered models.
Citation: Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715
References:
[1]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213.  doi: 10.1007/s11134-007-9036-7.  Google Scholar

[2]

A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[3]

N. M. Edelson and D. K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.  doi: 10.2307/1913415.  Google Scholar

[4]

A. Economou and S. Kanta, Equillibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.  doi: 10.1016/j.orl.2008.06.006.  Google Scholar

[5]

A. Economou and S. Kanta, Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237.  doi: 10.1007/s11134-008-9083-8.  Google Scholar

[6]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.  doi: 10.1287/opre.1100.0907.  Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278.  doi: 10.1016/j.ejor.2012.05.026.  Google Scholar

[8]

P. Guo and Q. Li, Strategic behavior and social optimization in partially-observable Markovian vacation queues,, Operations Research Letters, 41 (2013), 277.  doi: 10.1016/j.orl.2013.02.005.  Google Scholar

[9]

P. Guo and P. Zipkin, Analysis and comparison of queues with different levels of delay information,, Management Science, 53 (2007), 962.  doi: 10.1287/mnsc.1060.0686.  Google Scholar

[10]

R. Hassin and M. Haviv, Equilibrium Behavior in Queueing Systems: To Queue or Not to Queue,, Kluwer Academic Publishers, (2003).  doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[11]

M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239.  doi: 10.1007/s11134-007-9020-2.  Google Scholar

[12]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Games and Economic Behavior, 71 (2011), 521.  doi: 10.1016/j.geb.2010.06.002.  Google Scholar

[13]

L. Li, J. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns,, Computers & Industrial Engineering, 66 (2013), 751.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[14]

P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15.  doi: 10.2307/1909200.  Google Scholar

[15]

W. Stein, A. Rapoport, D. Seale, H. Zhang and R. Zwick, Batch queues with choice of arrivals: Equilibrium analysis and experimental study,, Games and Economic Behavior, 59 (2007), 345.  doi: 10.1016/j.geb.2006.08.008.  Google Scholar

[16]

W. Sun and N. Tian, Contrast of the equilibrium and socially optimal strategies in a queue with vacations,, Journal of Computational Information Systems, 4 (2008), 2167.   Google Scholar

[17]

H. Takagi, Queueing Analysis-A Foundation of Performance Evaluation, Vol. 1: Vacation and Prioriry Systems, Part I,, North-Holland, (1991).   Google Scholar

[18]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer, (2006).   Google Scholar

[19]

R. Tian and D. Yue, Optimal balking strategies in an Markvian queue with a single vacation,, Journal of Information and Computational Science, 9 (2012), 2827.   Google Scholar

[20]

F. Zhang, J. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times,, Journal of Industrial and Management Optimization, 9 (2013), 901.  doi: 10.3934/jimo.2013.9.901.  Google Scholar

[21]

F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations,, Applied Mathematical Modelling, 37 (2013), 8264.  doi: 10.1016/j.apm.2013.03.049.  Google Scholar

[22]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861.  doi: 10.3934/jimo.2012.8.861.  Google Scholar

show all references

References:
[1]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213.  doi: 10.1007/s11134-007-9036-7.  Google Scholar

[2]

A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[3]

N. M. Edelson and D. K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.  doi: 10.2307/1913415.  Google Scholar

[4]

A. Economou and S. Kanta, Equillibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.  doi: 10.1016/j.orl.2008.06.006.  Google Scholar

[5]

A. Economou and S. Kanta, Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237.  doi: 10.1007/s11134-008-9083-8.  Google Scholar

[6]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.  doi: 10.1287/opre.1100.0907.  Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278.  doi: 10.1016/j.ejor.2012.05.026.  Google Scholar

[8]

P. Guo and Q. Li, Strategic behavior and social optimization in partially-observable Markovian vacation queues,, Operations Research Letters, 41 (2013), 277.  doi: 10.1016/j.orl.2013.02.005.  Google Scholar

[9]

P. Guo and P. Zipkin, Analysis and comparison of queues with different levels of delay information,, Management Science, 53 (2007), 962.  doi: 10.1287/mnsc.1060.0686.  Google Scholar

[10]

R. Hassin and M. Haviv, Equilibrium Behavior in Queueing Systems: To Queue or Not to Queue,, Kluwer Academic Publishers, (2003).  doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[11]

M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239.  doi: 10.1007/s11134-007-9020-2.  Google Scholar

[12]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Games and Economic Behavior, 71 (2011), 521.  doi: 10.1016/j.geb.2010.06.002.  Google Scholar

[13]

L. Li, J. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns,, Computers & Industrial Engineering, 66 (2013), 751.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[14]

P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15.  doi: 10.2307/1909200.  Google Scholar

[15]

W. Stein, A. Rapoport, D. Seale, H. Zhang and R. Zwick, Batch queues with choice of arrivals: Equilibrium analysis and experimental study,, Games and Economic Behavior, 59 (2007), 345.  doi: 10.1016/j.geb.2006.08.008.  Google Scholar

[16]

W. Sun and N. Tian, Contrast of the equilibrium and socially optimal strategies in a queue with vacations,, Journal of Computational Information Systems, 4 (2008), 2167.   Google Scholar

[17]

H. Takagi, Queueing Analysis-A Foundation of Performance Evaluation, Vol. 1: Vacation and Prioriry Systems, Part I,, North-Holland, (1991).   Google Scholar

[18]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer, (2006).   Google Scholar

[19]

R. Tian and D. Yue, Optimal balking strategies in an Markvian queue with a single vacation,, Journal of Information and Computational Science, 9 (2012), 2827.   Google Scholar

[20]

F. Zhang, J. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times,, Journal of Industrial and Management Optimization, 9 (2013), 901.  doi: 10.3934/jimo.2013.9.901.  Google Scholar

[21]

F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations,, Applied Mathematical Modelling, 37 (2013), 8264.  doi: 10.1016/j.apm.2013.03.049.  Google Scholar

[22]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861.  doi: 10.3934/jimo.2012.8.861.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[3]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[4]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[5]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[6]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[7]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[8]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[11]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[14]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[15]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[16]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[17]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[18]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[19]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[20]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]