July  2015, 11(3): 747-762. doi: 10.3934/jimo.2015.11.747

Optimizing multi-objective decision making having qualitative evaluation

1. 

PhD. Student of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

2. 

Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Received  November 2012 Revised  July 2014 Published  October 2014

We develop a ranking process for multi-objective decision making. For optimizing the multi-objective problem having both quantitative and qualitative objectives, weight assessment is important to convert the problem into the corresponding single objective problem. Therefore, a ranking process is proposed to simultaneously obtain the objective weights and the evaluation of alternatives with multiple objectives. Several new concepts are developed to handle the dynamism in distance computation and ranking of decisions in a multi-objective model having qualitative evaluations. The proposed process is illustrated in a numerical example.
Citation: Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747
References:
[1]

M. A. Badri, A. K. Mortagy and C. A. Alsyed, A multiobjective model for locating fire stations,, European Journal of Operational Research, 110 (1998), 243.   Google Scholar

[2]

C. Briggs and P. Little, Impacts of organizational culture and personality traits on decision-making in technical organizations,, Systems Engineering, 11 (2008), 15.   Google Scholar

[3]

V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology,, Dover, (2008).   Google Scholar

[4]

J. Daniels, P. W. Werner and T. Bahill, Quantitative methods for tradeoff analysis,, Systems Engineering, 4 (2001), 190.   Google Scholar

[5]

M. H. DeGroot, Optimal Statistical Decisions,, McGraw-Hill, (1970).   Google Scholar

[6]

R. Y. Dicdican and Y. Y. Haimes, Relating multiobjective decision trees to the multiobjective risk impact analysis method,, Systems Engineering, 8 (2005), 95.   Google Scholar

[7]

M. Ehrgott and X. Gandibleaux, (Editors), Multiple criteria optimization: State of the Art Annotated Bibliographic Surveys,, Springer, (2002).   Google Scholar

[8]

A. O. Esogbue and R. E. Bellman, Fuzzy dynamic programming and its extensions,, TIMS/Studies Management Sci., 20 (1984), 147.   Google Scholar

[9]

H. I. Frohwein, J. H. Lambert, Y. Y. Haimes and L. A. Schiff, Multicriteria framework to aid comparison of roadway improvement projects,, J Transportation Engineering, 125 (1999), 224.   Google Scholar

[10]

K. Golabi, Selecting a group of dissimilar projects for funding,, IEEE Transaction in Engineering Management, 34 (1987), 138.   Google Scholar

[11]

S. D. Guikema and M. W. Milke, Sensitivity analysis for multi-attribute project selection problems,, Civil Engineering Environmental Systems, 20 (2003), 143.   Google Scholar

[12]

M. J. Hodgson, K. E. Rosing and A. L. G. Storrier, Testing a bicriterion location-allocation model with real world network traffic: The case of Edmonton,, Canada, (1997), 484.   Google Scholar

[13]

M. L. Hussein and M. A. Abo-Sinna, Decomposition of multi-objective programming problems by hybrid fuzzy dynamic programming,, Fuzzy Sets Systems, 60 (1993), 25.  doi: 10.1016/0165-0114(93)90286-Q.  Google Scholar

[14]

M. L. Hussein and M. A. Abo-Sinna, A fuzzy dynamic approach to the multicriteria resource allocation problem,, Fuzzy Sets Systems, 69 (1995), 115.  doi: 10.1016/0165-0114(94)00231-U.  Google Scholar

[15]

J. Kacprzyk, Multistage Fuzzy Control,, Wiley, (1997).   Google Scholar

[16]

J. Kacprzyk and A. O. Esogbue, Fuzzy dynamic programming: Main developments and applications,, Fuzzy Sets Systems, 81 (1996), 31.  doi: 10.1016/0165-0114(95)00239-1.  Google Scholar

[17]

J. Kacprzyk and L. Sugianto, Multistage fuzzy control involving objective and subjective aspects,, in L.C. Jain, (1998), 564.   Google Scholar

[18]

S. Kullback, Information Theory and Statistics,, John Wiley and Sons, (1959).   Google Scholar

[19]

S. Kullback and R. A. Leibler, On Information and Sufficiency,, Annals of Mathematical Statistics, 22 (1951), 79.  doi: 10.1214/aoms/1177729694.  Google Scholar

[20]

J. H. Lambert, J. A. Baker and K. D. Peterson, Decision aid for allocation of transport funds to guardrails,, Accident Anal Prevention, 35 (2003), 47.   Google Scholar

[21]

J. H. Lambert, Y. Y. Haimes, D. Li, R. M. Schoof and V. Tulsiani, Identification, ranking and management of risks in a major systems acquisition,, Reliability Engineering and Systems Safety, 72 (2001), 315.   Google Scholar

[22]

J. H. Lambert, N. N. Joshi, K. D. Peterson and S. M. Wadie, Coordination and diversification of investments in multimodal transportation,, Public Works Management Policy, 11 (2007), 250.   Google Scholar

[23]

J. H. Lambert, K. A. Peterson and N. N. Joshi, Synthesis of quantitative and qualitative evidence for risk-based analysis of highway projects,, Accident Anal Prevention, 38 (2006), 925.   Google Scholar

[24]

J. H. Lambert, K. D. Peterson, S. M. Wadie and M. W. Farrington, Development of a methodology to coordinate and prioritize multimodal investment networks,, Virginia Transportation Research Council Publication, (2005).   Google Scholar

[25]

D. B. Lee, Methods for evaluation of transportation projects in the USA,, Transportation Policy, 7 (2000), 41.   Google Scholar

[26]

L. M. Meade and A. Presley, R and D project selection using the analytic process,, IEEE Transaction in Engineering Management, 49 (2002), 59.   Google Scholar

[27]

D. A. Niemeier, Z. B. Zabinsky, Z. Zeng and G. S. Rutherford, Optimization models for transportation project programming process,, Journal of Transportation Engineering, 121 (1995), 14.   Google Scholar

[28]

G. S. Parnell, R. E. Metzger, J. Merrick and R. Eiler, Multiobjective decision analysis of theater missile defense architectures,, Systems Engineering, 4 (2001), 24.   Google Scholar

[29]

M. Sanchez, N. Agell and G. Ormazabal, Multiple-criteria evaluation for value management in civil engineering,, Journal of Management Engineering, 21 (2005), 131.   Google Scholar

[30]

J. S. Shang, Y. Tjader and Y. Ding, A unified framework for multicriteria evaluation of transportation,, IEEE Transaction in Engineering Management, 51 (2004), 300.   Google Scholar

[31]

P. J. Smith, M. Shafi and H. Gao, Quick simulation: A review of importance sampling techniques in communication systems,, IEEE J.Select.Areas Commun., 15 (1997), 597.   Google Scholar

[32]

R. Srinivasan, Importance Sampling - Applications in Communications and Detection,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-05052-1.  Google Scholar

[33]

J. L. Tsang, J. H. Lambert and R. C. Patev, Multiple-criteria decision making in the design of innovative lock walls for barge impact: Phase 2, implementation methodologies, ERDC/ITL TR-02-5,, ERDC Vicksburg Publications, (2002).   Google Scholar

[34]

C. R. Weisbin, G. Rodriguez, A. Elfes and J. H. Smith, Toward a systematic approach for selection of NASA technology portfolios,, 7 (2004), 7 (2004), 285.   Google Scholar

[35]

S. Y. Chen and G. T. Fu, Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems,, Fuzzy Sets and Systems, 152 (2005), 499.  doi: 10.1016/j.fss.2004.10.006.  Google Scholar

[36]

J. Q. Wang and J. J. Li, Multi-criteria fuzzy decision-making method based on cross entropy and score functions,, Expert Systems with Applications, 38 (2011), 1032.   Google Scholar

[37]

A. R. Jafarian-Moghaddam and K. Ghoseiri, Fuzzy dynamic multi-objective Data Envelopment Analysis model,, Expert Systems with Applications, 38 (2011), 850.   Google Scholar

show all references

References:
[1]

M. A. Badri, A. K. Mortagy and C. A. Alsyed, A multiobjective model for locating fire stations,, European Journal of Operational Research, 110 (1998), 243.   Google Scholar

[2]

C. Briggs and P. Little, Impacts of organizational culture and personality traits on decision-making in technical organizations,, Systems Engineering, 11 (2008), 15.   Google Scholar

[3]

V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology,, Dover, (2008).   Google Scholar

[4]

J. Daniels, P. W. Werner and T. Bahill, Quantitative methods for tradeoff analysis,, Systems Engineering, 4 (2001), 190.   Google Scholar

[5]

M. H. DeGroot, Optimal Statistical Decisions,, McGraw-Hill, (1970).   Google Scholar

[6]

R. Y. Dicdican and Y. Y. Haimes, Relating multiobjective decision trees to the multiobjective risk impact analysis method,, Systems Engineering, 8 (2005), 95.   Google Scholar

[7]

M. Ehrgott and X. Gandibleaux, (Editors), Multiple criteria optimization: State of the Art Annotated Bibliographic Surveys,, Springer, (2002).   Google Scholar

[8]

A. O. Esogbue and R. E. Bellman, Fuzzy dynamic programming and its extensions,, TIMS/Studies Management Sci., 20 (1984), 147.   Google Scholar

[9]

H. I. Frohwein, J. H. Lambert, Y. Y. Haimes and L. A. Schiff, Multicriteria framework to aid comparison of roadway improvement projects,, J Transportation Engineering, 125 (1999), 224.   Google Scholar

[10]

K. Golabi, Selecting a group of dissimilar projects for funding,, IEEE Transaction in Engineering Management, 34 (1987), 138.   Google Scholar

[11]

S. D. Guikema and M. W. Milke, Sensitivity analysis for multi-attribute project selection problems,, Civil Engineering Environmental Systems, 20 (2003), 143.   Google Scholar

[12]

M. J. Hodgson, K. E. Rosing and A. L. G. Storrier, Testing a bicriterion location-allocation model with real world network traffic: The case of Edmonton,, Canada, (1997), 484.   Google Scholar

[13]

M. L. Hussein and M. A. Abo-Sinna, Decomposition of multi-objective programming problems by hybrid fuzzy dynamic programming,, Fuzzy Sets Systems, 60 (1993), 25.  doi: 10.1016/0165-0114(93)90286-Q.  Google Scholar

[14]

M. L. Hussein and M. A. Abo-Sinna, A fuzzy dynamic approach to the multicriteria resource allocation problem,, Fuzzy Sets Systems, 69 (1995), 115.  doi: 10.1016/0165-0114(94)00231-U.  Google Scholar

[15]

J. Kacprzyk, Multistage Fuzzy Control,, Wiley, (1997).   Google Scholar

[16]

J. Kacprzyk and A. O. Esogbue, Fuzzy dynamic programming: Main developments and applications,, Fuzzy Sets Systems, 81 (1996), 31.  doi: 10.1016/0165-0114(95)00239-1.  Google Scholar

[17]

J. Kacprzyk and L. Sugianto, Multistage fuzzy control involving objective and subjective aspects,, in L.C. Jain, (1998), 564.   Google Scholar

[18]

S. Kullback, Information Theory and Statistics,, John Wiley and Sons, (1959).   Google Scholar

[19]

S. Kullback and R. A. Leibler, On Information and Sufficiency,, Annals of Mathematical Statistics, 22 (1951), 79.  doi: 10.1214/aoms/1177729694.  Google Scholar

[20]

J. H. Lambert, J. A. Baker and K. D. Peterson, Decision aid for allocation of transport funds to guardrails,, Accident Anal Prevention, 35 (2003), 47.   Google Scholar

[21]

J. H. Lambert, Y. Y. Haimes, D. Li, R. M. Schoof and V. Tulsiani, Identification, ranking and management of risks in a major systems acquisition,, Reliability Engineering and Systems Safety, 72 (2001), 315.   Google Scholar

[22]

J. H. Lambert, N. N. Joshi, K. D. Peterson and S. M. Wadie, Coordination and diversification of investments in multimodal transportation,, Public Works Management Policy, 11 (2007), 250.   Google Scholar

[23]

J. H. Lambert, K. A. Peterson and N. N. Joshi, Synthesis of quantitative and qualitative evidence for risk-based analysis of highway projects,, Accident Anal Prevention, 38 (2006), 925.   Google Scholar

[24]

J. H. Lambert, K. D. Peterson, S. M. Wadie and M. W. Farrington, Development of a methodology to coordinate and prioritize multimodal investment networks,, Virginia Transportation Research Council Publication, (2005).   Google Scholar

[25]

D. B. Lee, Methods for evaluation of transportation projects in the USA,, Transportation Policy, 7 (2000), 41.   Google Scholar

[26]

L. M. Meade and A. Presley, R and D project selection using the analytic process,, IEEE Transaction in Engineering Management, 49 (2002), 59.   Google Scholar

[27]

D. A. Niemeier, Z. B. Zabinsky, Z. Zeng and G. S. Rutherford, Optimization models for transportation project programming process,, Journal of Transportation Engineering, 121 (1995), 14.   Google Scholar

[28]

G. S. Parnell, R. E. Metzger, J. Merrick and R. Eiler, Multiobjective decision analysis of theater missile defense architectures,, Systems Engineering, 4 (2001), 24.   Google Scholar

[29]

M. Sanchez, N. Agell and G. Ormazabal, Multiple-criteria evaluation for value management in civil engineering,, Journal of Management Engineering, 21 (2005), 131.   Google Scholar

[30]

J. S. Shang, Y. Tjader and Y. Ding, A unified framework for multicriteria evaluation of transportation,, IEEE Transaction in Engineering Management, 51 (2004), 300.   Google Scholar

[31]

P. J. Smith, M. Shafi and H. Gao, Quick simulation: A review of importance sampling techniques in communication systems,, IEEE J.Select.Areas Commun., 15 (1997), 597.   Google Scholar

[32]

R. Srinivasan, Importance Sampling - Applications in Communications and Detection,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-05052-1.  Google Scholar

[33]

J. L. Tsang, J. H. Lambert and R. C. Patev, Multiple-criteria decision making in the design of innovative lock walls for barge impact: Phase 2, implementation methodologies, ERDC/ITL TR-02-5,, ERDC Vicksburg Publications, (2002).   Google Scholar

[34]

C. R. Weisbin, G. Rodriguez, A. Elfes and J. H. Smith, Toward a systematic approach for selection of NASA technology portfolios,, 7 (2004), 7 (2004), 285.   Google Scholar

[35]

S. Y. Chen and G. T. Fu, Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems,, Fuzzy Sets and Systems, 152 (2005), 499.  doi: 10.1016/j.fss.2004.10.006.  Google Scholar

[36]

J. Q. Wang and J. J. Li, Multi-criteria fuzzy decision-making method based on cross entropy and score functions,, Expert Systems with Applications, 38 (2011), 1032.   Google Scholar

[37]

A. R. Jafarian-Moghaddam and K. Ghoseiri, Fuzzy dynamic multi-objective Data Envelopment Analysis model,, Expert Systems with Applications, 38 (2011), 850.   Google Scholar

[1]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[4]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[5]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

[Back to Top]