July  2015, 11(3): 763-777. doi: 10.3934/jimo.2015.11.763

Stability of a cyclic polling system with an adaptive mechanism

1. 

Department of Mathematics Education, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, South Korea

2. 

Department of Mathematics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, South Korea

Received  September 2013 Revised  May 2014 Published  October 2014

We consider a single server cyclic polling system with multiple infinite-buffer queues where the server follows an adaptive mechanism: if a queue is empty at its polling moment the server will skip this queue in the next cycle. After being skipped, a queue is always visited in the next cycle. The service discipline in each queue is 1-limited. Using the fluid limit approach, we find the necessary and sufficient condition for the stability of such polling system.
Citation: Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial & Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763
References:
[1]

E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems,, Queueing Systems, 11 (1992), 35.  doi: 10.1007/BF01159286.  Google Scholar

[2]

M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems,, Surveys in Operations Research and Management Science, 16 (2011), 67.  doi: 10.1016/j.sorms.2011.01.001.  Google Scholar

[3]

A. A. Borovkov and R. Schassberger, Ergodicity of a polling network,, Stochastic Processes and their Applications, 50 (1994), 253.  doi: 10.1016/0304-4149(94)90122-8.  Google Scholar

[4]

O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines,, Performance Evaluation, 66 (2009), 621.  doi: 10.1016/j.peva.2009.05.004.  Google Scholar

[5]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits,, Queueing Systems, 28 (1998), 7.  doi: 10.1023/A:1019182619288.  Google Scholar

[6]

N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism,, Annals of Operations Research, 198 (2012), 125.  doi: 10.1007/s10479-011-0963-7.  Google Scholar

[7]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models,, The Annals of Applied Probability, 5 (1995), 49.  doi: 10.1214/aoap/1177004828.  Google Scholar

[8]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models,, IEEE Transaction on Automatic Control, 40 (1995), 1889.  doi: 10.1109/9.471210.  Google Scholar

[9]

D. G. Down, On the stability of polling models with multiple servers,, Journal of Applied Probability, 35 (1998), 925.  doi: 10.1239/jap/1032438388.  Google Scholar

[10]

C. Fricker, M. R. Jaíbi, Monotonicity and stability of periodic polling models,, Queueing Systems, 15 (1994), 211.  doi: 10.1007/BF01189238.  Google Scholar

[11]

L. Georgiadis and W. Szpankowski, Stability of token passing rings,, Queueing Systems, 11 (1992), 7.  doi: 10.1007/BF01159285.  Google Scholar

[12]

H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization,, IEEE Transactions on Communications, 38 (1990), 1750.  doi: 10.1109/26.61446.  Google Scholar

[13]

L. Massouli, Stability of non-Markovian polling systems,, Queueing Systems, 21 (1995), 67.  doi: 10.1007/BF01158575.  Google Scholar

[14]

J. A. C. Resing, Polling systems and multitype branching processes,, Queueing Systems, 13 (1993), 409.  doi: 10.1007/BF01149263.  Google Scholar

[15]

A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks,, Problems of Information Transmission, 28 (1992), 199.   Google Scholar

[16]

Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals,, European Journal of Operational Research, 197 (2009), 188.  doi: 10.1016/j.ejor.2008.05.016.  Google Scholar

[17]

H. Takagi, Analysis of Polling Systems,, Performance Evaluation, 5 (1985).  doi: 10.1016/0166-5316(85)90016-1.  Google Scholar

[18]

V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks,, Cybernetics and Information Technologies, 8 (2008), 3.   Google Scholar

[19]

V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism,, Quality Technology & Quantitative Management, 9 (2012), 211.   Google Scholar

[20]

A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems,, Performance Evaluation, 64 (2007), 1009.  doi: 10.1016/j.peva.2007.06.015.  Google Scholar

[21]

A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline,, Performance Evaluation, 69 (2012), 274.   Google Scholar

[22]

E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service,, Probability in the Engineering and Informational Sciences, 23 (2009), 385.  doi: 10.1017/S0269964809000217.  Google Scholar

show all references

References:
[1]

E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems,, Queueing Systems, 11 (1992), 35.  doi: 10.1007/BF01159286.  Google Scholar

[2]

M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems,, Surveys in Operations Research and Management Science, 16 (2011), 67.  doi: 10.1016/j.sorms.2011.01.001.  Google Scholar

[3]

A. A. Borovkov and R. Schassberger, Ergodicity of a polling network,, Stochastic Processes and their Applications, 50 (1994), 253.  doi: 10.1016/0304-4149(94)90122-8.  Google Scholar

[4]

O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines,, Performance Evaluation, 66 (2009), 621.  doi: 10.1016/j.peva.2009.05.004.  Google Scholar

[5]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits,, Queueing Systems, 28 (1998), 7.  doi: 10.1023/A:1019182619288.  Google Scholar

[6]

N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism,, Annals of Operations Research, 198 (2012), 125.  doi: 10.1007/s10479-011-0963-7.  Google Scholar

[7]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models,, The Annals of Applied Probability, 5 (1995), 49.  doi: 10.1214/aoap/1177004828.  Google Scholar

[8]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models,, IEEE Transaction on Automatic Control, 40 (1995), 1889.  doi: 10.1109/9.471210.  Google Scholar

[9]

D. G. Down, On the stability of polling models with multiple servers,, Journal of Applied Probability, 35 (1998), 925.  doi: 10.1239/jap/1032438388.  Google Scholar

[10]

C. Fricker, M. R. Jaíbi, Monotonicity and stability of periodic polling models,, Queueing Systems, 15 (1994), 211.  doi: 10.1007/BF01189238.  Google Scholar

[11]

L. Georgiadis and W. Szpankowski, Stability of token passing rings,, Queueing Systems, 11 (1992), 7.  doi: 10.1007/BF01159285.  Google Scholar

[12]

H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization,, IEEE Transactions on Communications, 38 (1990), 1750.  doi: 10.1109/26.61446.  Google Scholar

[13]

L. Massouli, Stability of non-Markovian polling systems,, Queueing Systems, 21 (1995), 67.  doi: 10.1007/BF01158575.  Google Scholar

[14]

J. A. C. Resing, Polling systems and multitype branching processes,, Queueing Systems, 13 (1993), 409.  doi: 10.1007/BF01149263.  Google Scholar

[15]

A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks,, Problems of Information Transmission, 28 (1992), 199.   Google Scholar

[16]

Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals,, European Journal of Operational Research, 197 (2009), 188.  doi: 10.1016/j.ejor.2008.05.016.  Google Scholar

[17]

H. Takagi, Analysis of Polling Systems,, Performance Evaluation, 5 (1985).  doi: 10.1016/0166-5316(85)90016-1.  Google Scholar

[18]

V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks,, Cybernetics and Information Technologies, 8 (2008), 3.   Google Scholar

[19]

V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism,, Quality Technology & Quantitative Management, 9 (2012), 211.   Google Scholar

[20]

A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems,, Performance Evaluation, 64 (2007), 1009.  doi: 10.1016/j.peva.2007.06.015.  Google Scholar

[21]

A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline,, Performance Evaluation, 69 (2012), 274.   Google Scholar

[22]

E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service,, Probability in the Engineering and Informational Sciences, 23 (2009), 385.  doi: 10.1017/S0269964809000217.  Google Scholar

[1]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[2]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[3]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[4]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[5]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[6]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[7]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[8]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[9]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[10]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[11]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[12]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[15]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[16]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[17]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[20]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]