July  2015, 11(3): 763-777. doi: 10.3934/jimo.2015.11.763

Stability of a cyclic polling system with an adaptive mechanism

1. 

Department of Mathematics Education, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, South Korea

2. 

Department of Mathematics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, South Korea

Received  September 2013 Revised  May 2014 Published  October 2014

We consider a single server cyclic polling system with multiple infinite-buffer queues where the server follows an adaptive mechanism: if a queue is empty at its polling moment the server will skip this queue in the next cycle. After being skipped, a queue is always visited in the next cycle. The service discipline in each queue is 1-limited. Using the fluid limit approach, we find the necessary and sufficient condition for the stability of such polling system.
Citation: Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial and Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763
References:
[1]

E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems, Queueing Systems, 11 (1992), 35-57. doi: 10.1007/BF01159286.

[2]

M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems, Surveys in Operations Research and Management Science, 16 (2011), 67-82. doi: 10.1016/j.sorms.2011.01.001.

[3]

A. A. Borovkov and R. Schassberger, Ergodicity of a polling network, Stochastic Processes and their Applications, 50 (1994), 253-262. doi: 10.1016/0304-4149(94)90122-8.

[4]

O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines, Performance Evaluation, 66 (2009), 621-639. doi: 10.1016/j.peva.2009.05.004.

[5]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems, 28 (1998), 7-31. doi: 10.1023/A:1019182619288.

[6]

N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism, Annals of Operations Research, 198 (2012), 125-144. doi: 10.1007/s10479-011-0963-7.

[7]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, The Annals of Applied Probability, 5 (1995), 49-77. doi: 10.1214/aoap/1177004828.

[8]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models, IEEE Transaction on Automatic Control, 40 (1995), 1889-1904. doi: 10.1109/9.471210.

[9]

D. G. Down, On the stability of polling models with multiple servers, Journal of Applied Probability, 35 (1998), 925-935. doi: 10.1239/jap/1032438388.

[10]

C. Fricker, M. R. Jaíbi, Monotonicity and stability of periodic polling models, Queueing Systems, 15 (1994), 211-238. doi: 10.1007/BF01189238.

[11]

L. Georgiadis and W. Szpankowski, Stability of token passing rings, Queueing Systems, 11 (1992), 7-33. doi: 10.1007/BF01159285.

[12]

H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization, IEEE Transactions on Communications, 38 (1990), 1750-1760. doi: 10.1109/26.61446.

[13]

L. Massouli, Stability of non-Markovian polling systems, Queueing Systems, 21 (1995), 67-95. doi: 10.1007/BF01158575.

[14]

J. A. C. Resing, Polling systems and multitype branching processes, Queueing Systems, 13 (1993), 409-426. doi: 10.1007/BF01149263.

[15]

A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks, Problems of Information Transmission, 28 (1992), 199-220.

[16]

Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals, European Journal of Operational Research, 197 (2009), 188-195. doi: 10.1016/j.ejor.2008.05.016.

[17]

H. Takagi, Analysis of Polling Systems, Performance Evaluation, 5 (1985), pp 206. doi: 10.1016/0166-5316(85)90016-1.

[18]

V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks, Cybernetics and Information Technologies, 8 (2008), 3-11.

[19]

V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism, Quality Technology & Quantitative Management, 9 (2012), 211-228.

[20]

A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems, Performance Evaluation, 64 (2007), 1009-1028. doi: 10.1016/j.peva.2007.06.015.

[21]

A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline, Performance Evaluation, 69 (2012), 274-288.

[22]

E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service, Probability in the Engineering and Informational Sciences, 23 (2009), 385-408. doi: 10.1017/S0269964809000217.

show all references

References:
[1]

E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems, Queueing Systems, 11 (1992), 35-57. doi: 10.1007/BF01159286.

[2]

M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems, Surveys in Operations Research and Management Science, 16 (2011), 67-82. doi: 10.1016/j.sorms.2011.01.001.

[3]

A. A. Borovkov and R. Schassberger, Ergodicity of a polling network, Stochastic Processes and their Applications, 50 (1994), 253-262. doi: 10.1016/0304-4149(94)90122-8.

[4]

O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines, Performance Evaluation, 66 (2009), 621-639. doi: 10.1016/j.peva.2009.05.004.

[5]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems, 28 (1998), 7-31. doi: 10.1023/A:1019182619288.

[6]

N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism, Annals of Operations Research, 198 (2012), 125-144. doi: 10.1007/s10479-011-0963-7.

[7]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, The Annals of Applied Probability, 5 (1995), 49-77. doi: 10.1214/aoap/1177004828.

[8]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models, IEEE Transaction on Automatic Control, 40 (1995), 1889-1904. doi: 10.1109/9.471210.

[9]

D. G. Down, On the stability of polling models with multiple servers, Journal of Applied Probability, 35 (1998), 925-935. doi: 10.1239/jap/1032438388.

[10]

C. Fricker, M. R. Jaíbi, Monotonicity and stability of periodic polling models, Queueing Systems, 15 (1994), 211-238. doi: 10.1007/BF01189238.

[11]

L. Georgiadis and W. Szpankowski, Stability of token passing rings, Queueing Systems, 11 (1992), 7-33. doi: 10.1007/BF01159285.

[12]

H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization, IEEE Transactions on Communications, 38 (1990), 1750-1760. doi: 10.1109/26.61446.

[13]

L. Massouli, Stability of non-Markovian polling systems, Queueing Systems, 21 (1995), 67-95. doi: 10.1007/BF01158575.

[14]

J. A. C. Resing, Polling systems and multitype branching processes, Queueing Systems, 13 (1993), 409-426. doi: 10.1007/BF01149263.

[15]

A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks, Problems of Information Transmission, 28 (1992), 199-220.

[16]

Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals, European Journal of Operational Research, 197 (2009), 188-195. doi: 10.1016/j.ejor.2008.05.016.

[17]

H. Takagi, Analysis of Polling Systems, Performance Evaluation, 5 (1985), pp 206. doi: 10.1016/0166-5316(85)90016-1.

[18]

V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks, Cybernetics and Information Technologies, 8 (2008), 3-11.

[19]

V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism, Quality Technology & Quantitative Management, 9 (2012), 211-228.

[20]

A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems, Performance Evaluation, 64 (2007), 1009-1028. doi: 10.1016/j.peva.2007.06.015.

[21]

A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline, Performance Evaluation, 69 (2012), 274-288.

[22]

E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service, Probability in the Engineering and Informational Sciences, 23 (2009), 385-408. doi: 10.1017/S0269964809000217.

[1]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial and Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[2]

Shunfu Jin, Wuyi Yue, Zsolt Saffer. Analysis and optimization of a gated polling based spectrum allocation mechanism in cognitive radio networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 687-702. doi: 10.3934/jimo.2016.12.687

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[5]

Haibo Cui, Haiyan Yin. Stability of the composite wave for the inflow problem on the micropolar fluid model. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1265-1292. doi: 10.3934/cpaa.2017062

[6]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[7]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

[8]

Tao Jiang, Liwei Liu. Analysis of a batch service multi-server polling system with dynamic service control. Journal of Industrial and Management Optimization, 2018, 14 (2) : 743-757. doi: 10.3934/jimo.2017073

[9]

Zsolt Saffer, Miklós Telek. Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network. Journal of Industrial and Management Optimization, 2011, 7 (3) : 677-697. doi: 10.3934/jimo.2011.7.677

[10]

Kimberly Fessel, Mark H. Holmes. A model for the nonlinear mechanism responsible for cochlear amplification. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1357-1373. doi: 10.3934/mbe.2014.11.1357

[11]

Benjamin Steinberg, Yuqing Wang, Huaxiong Huang, Robert M. Miura. Spatial Buffering Mechanism: Mathematical Model and Computer Simulations. Mathematical Biosciences & Engineering, 2005, 2 (4) : 675-702. doi: 10.3934/mbe.2005.2.675

[12]

Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame. Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7 (4) : 989-1018. doi: 10.3934/nhm.2012.7.989

[13]

Ruitong Wu, Yongming Li, Jun Hu, Wei Liu, Shaocheng Tong. Switching mechanism-based event-triggered fuzzy adaptive control with prescribed performance for MIMO nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1713-1731. doi: 10.3934/dcdss.2021168

[14]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[15]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[16]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations and Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[17]

Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics and Games, 2018, 5 (4) : 265-282. doi: 10.3934/jdg.2018017

[18]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks and Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[19]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[20]

Jerzy A. Filar, Prabhu Manyem, David M. Panton, Kevin White. A model for adaptive rescheduling of flights in emergencies (MARFE). Journal of Industrial and Management Optimization, 2007, 3 (2) : 335-356. doi: 10.3934/jimo.2007.3.335

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]