Citation: |
[1] |
I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters, Comput. Oper. Res., 31 (2004), 1537-1548.doi: 10.1016/S0305-0548(03)00107-2. |
[2] |
Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Oper. Res. Lett., 33 (2005), 201-209.doi: 10.1016/j.orl.2004.05.006. |
[3] |
A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation, Appl. Math. Model., 31 (2007), 1701-1710.doi: 10.1016/j.apm.2006.05.010. |
[4] |
K. C. Chae, D. E. Lim and W. S. Yang, The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation, Perform. Eval., 66 (2009), 356-367.doi: 10.1016/j.peva.2009.01.005. |
[5] |
K. C. Chae, H. M. Park and W. S. Yang, A GI/Geo/1 queue with negative and positive customers, Appl. Math. Model., 34 (2010), 1662-1671.doi: 10.1016/j.apm.2009.09.015. |
[6] |
R. Chakka and P. G. Harrison, A Markov modulated multi-server queue with negative customers-the MM CPP/GE/c/L G-queue, Acta Inform., 37 (2001), 881-919.doi: 10.1007/PL00013307. |
[7] |
I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations, Appl. Math. Model., 37 (2013), 1295-1309.doi: 10.1016/j.apm.2012.04.011. |
[8] |
T. V. Do, Bibliography on G-networks, negative customers and applications, Math. Comput. Model., 53 (2011), 205-212. |
[9] |
S. Gao and Z. Liu, An M/G/1 queue with single working vacation and vacation interruption under bernoulli schedule, Appl. Math. Model., 37 (2013), 1564-1579.doi: 10.1016/j.apm.2012.04.045. |
[10] |
S. Gao, J. Wang and D. Zhang, Discrete-time $GI^X$/Geo/1/N queue with negative customers and multiple working vacations, J. Korean. Stat. Soc., 42 (2013), 515-528. |
[11] |
E. Gelenbe, Random neural networks with negative and positive signals and product form solution, Neural Comput., 1 (1989), 502-510.doi: 10.1162/neco.1989.1.4.502. |
[12] |
E. Gelenbe, Product-form queueing networks with negative and positive customers, J. Appl. Probab., 28 (1991), 656-663.doi: 10.2307/3214499. |
[13] |
V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations, Comput. Ind. Eng., 61 (2011), 629-636.doi: 10.1016/j.cie.2011.04.018. |
[14] |
P. G. Harrison, N. M. Patel and E. Pitel, Reliability modelling using G-queues, Eur. J. Oper. Res., 126 (2000), 273-287.doi: 10.1016/S0377-2217(99)00478-6. |
[15] |
J.-H. Li and N. Tian, The discrete-time GI/Geo/1 queue with working vacations and vacation interruption, Appl. Math. Comput., 185 (2007), 1-10.doi: 10.1016/j.amc.2006.07.008. |
[16] |
Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers, Queueing Syst., 47 (2004), 5-43.doi: 10.1023/B:QUES.0000032798.65858.19. |
[17] |
W.-Y. Liu, X.-L. Xu and N.-S. Tian, Stochastic decompositions in the M/M/1 queue with working vacations, Oper. Res. Lett., 35 (2007), 595-600.doi: 10.1016/j.orl.2006.12.007. |
[18] |
L. R. Ronald, Optimization in Operations Research, New Jersey, 1997. |
[19] |
L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (m/m/1/wv), Perform. Eval., 50 (2002), 41-52.doi: 10.1016/S0166-5316(02)00057-3. |
[20] |
J. Wang, B. Liu and J. Li, Transient analysis of an M/G/1 retrial queue subject to disasters and server failures, European Journal of Operational Research, 189 (2008), 1118-1132.doi: 10.1016/j.ejor.2007.04.054. |
[21] |
J. Wang and P. Zhang, A discrete-time retrial queue with negative customers and unreliable server, Comput. Ind. Eng., 56 (2009), 1216-1222.doi: 10.1016/j.cie.2008.07.010. |
[22] |
J. Wang, Y. Huang and Z. Dai, A discrete-time on-off source queueing system with negative customers, Comput. Ind. Eng., 61 (2011), 1226-1232.doi: 10.1016/j.cie.2011.07.013. |
[23] |
D.-A. Wu and H. Takagi, M/G/1 queue with multiple working vacations, Perform. Eval., 63 (2006), 654-681.doi: 10.1016/j.peva.2005.05.005. |
[24] |
J. Wu, Z. Liu and Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations, Appl. Math. Model., 33 (2009), 4314-4325.doi: 10.1016/j.apm.2009.03.013. |
[25] |
M. Yu, Y. Tang and Y. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/1/L queue with multiple working vacations and partial batch rejection, Comput. Ind. Eng., 56 (2009), 1243-1253. |
[26] |
M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period, J. Comput. Appl. Math., 235 (2011), 2170-2184.doi: 10.1016/j.cam.2010.10.013. |
[27] |
M. Zhang and Z. Hou, Steady state analysis of the GI/M/1/N queue with a variant of multiple working vacations, Comput. Ind. Eng., 61 (2011), 1296-1301.doi: 10.1016/j.cie.2011.08.002. |