July  2015, 11(3): 779-806. doi: 10.3934/jimo.2015.11.779

On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations

1. 

Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, China

2. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing

Received  September 2013 Revised  May 2014 Published  October 2014

This paper considers a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations, where upon arrival, a negative customer removes one positive (ordinary) customer in service if any is present and disappears immediately; otherwise, it has no effect on the system if the system is empty. As soon as the system becomes empty, the server immediately takes a working vacation. If there are no customers in the system at the end of the working vacation, the server takes another working vacation with probability $p$ or remains dormant in the system with probability $1-p$. Otherwise, the server starts to serve the customers with the normal service rate immediately if there are some customers at the end of a working vacation. This pattern does not terminate until the server has taken $J$ successive working vacations. Steady-state system length distributions at various epochs such as, pre-arrival, arbitrary and outside observer's observation epochs have been obtained. Based on the various system length distributions, we also give some important performance measures including blocking probabilities, mean queue length, probability mass function of waiting time and other performance measures along with some numerical examples. Then, we use the parabolic method to search the optimum value of the normal service rate under a established cost function.
Citation: Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779
References:
[1]

I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters,, Comput. Oper. Res., 31 (2004), 1537. doi: 10.1016/S0305-0548(03)00107-2. Google Scholar

[2]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201. doi: 10.1016/j.orl.2004.05.006. Google Scholar

[3]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701. doi: 10.1016/j.apm.2006.05.010. Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation,, Perform. Eval., 66 (2009), 356. doi: 10.1016/j.peva.2009.01.005. Google Scholar

[5]

K. C. Chae, H. M. Park and W. S. Yang, A GI/Geo/1 queue with negative and positive customers,, Appl. Math. Model., 34 (2010), 1662. doi: 10.1016/j.apm.2009.09.015. Google Scholar

[6]

R. Chakka and P. G. Harrison, A Markov modulated multi-server queue with negative customers-the MM CPP/GE/c/L G-queue,, Acta Inform., 37 (2001), 881. doi: 10.1007/PL00013307. Google Scholar

[7]

I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations,, Appl. Math. Model., 37 (2013), 1295. doi: 10.1016/j.apm.2012.04.011. Google Scholar

[8]

T. V. Do, Bibliography on G-networks, negative customers and applications,, Math. Comput. Model., 53 (2011), 205. Google Scholar

[9]

S. Gao and Z. Liu, An M/G/1 queue with single working vacation and vacation interruption under bernoulli schedule,, Appl. Math. Model., 37 (2013), 1564. doi: 10.1016/j.apm.2012.04.045. Google Scholar

[10]

S. Gao, J. Wang and D. Zhang, Discrete-time $GI^X$/Geo/1/N queue with negative customers and multiple working vacations,, J. Korean. Stat. Soc., 42 (2013), 515. Google Scholar

[11]

E. Gelenbe, Random neural networks with negative and positive signals and product form solution,, Neural Comput., 1 (1989), 502. doi: 10.1162/neco.1989.1.4.502. Google Scholar

[12]

E. Gelenbe, Product-form queueing networks with negative and positive customers,, J. Appl. Probab., 28 (1991), 656. doi: 10.2307/3214499. Google Scholar

[13]

V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations,, Comput. Ind. Eng., 61 (2011), 629. doi: 10.1016/j.cie.2011.04.018. Google Scholar

[14]

P. G. Harrison, N. M. Patel and E. Pitel, Reliability modelling using G-queues,, Eur. J. Oper. Res., 126 (2000), 273. doi: 10.1016/S0377-2217(99)00478-6. Google Scholar

[15]

J.-H. Li and N. Tian, The discrete-time GI/Geo/1 queue with working vacations and vacation interruption,, Appl. Math. Comput., 185 (2007), 1. doi: 10.1016/j.amc.2006.07.008. Google Scholar

[16]

Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers,, Queueing Syst., 47 (2004), 5. doi: 10.1023/B:QUES.0000032798.65858.19. Google Scholar

[17]

W.-Y. Liu, X.-L. Xu and N.-S. Tian, Stochastic decompositions in the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595. doi: 10.1016/j.orl.2006.12.007. Google Scholar

[18]

L. R. Ronald, Optimization in Operations Research,, New Jersey, (1997). Google Scholar

[19]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (m/m/1/wv),, Perform. Eval., 50 (2002), 41. doi: 10.1016/S0166-5316(02)00057-3. Google Scholar

[20]

J. Wang, B. Liu and J. Li, Transient analysis of an M/G/1 retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118. doi: 10.1016/j.ejor.2007.04.054. Google Scholar

[21]

J. Wang and P. Zhang, A discrete-time retrial queue with negative customers and unreliable server,, Comput. Ind. Eng., 56 (2009), 1216. doi: 10.1016/j.cie.2008.07.010. Google Scholar

[22]

J. Wang, Y. Huang and Z. Dai, A discrete-time on-off source queueing system with negative customers,, Comput. Ind. Eng., 61 (2011), 1226. doi: 10.1016/j.cie.2011.07.013. Google Scholar

[23]

D.-A. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Perform. Eval., 63 (2006), 654. doi: 10.1016/j.peva.2005.05.005. Google Scholar

[24]

J. Wu, Z. Liu and Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations,, Appl. Math. Model., 33 (2009), 4314. doi: 10.1016/j.apm.2009.03.013. Google Scholar

[25]

M. Yu, Y. Tang and Y. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/1/L queue with multiple working vacations and partial batch rejection,, Comput. Ind. Eng., 56 (2009), 1243. Google Scholar

[26]

M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period,, J. Comput. Appl. Math., 235 (2011), 2170. doi: 10.1016/j.cam.2010.10.013. Google Scholar

[27]

M. Zhang and Z. Hou, Steady state analysis of the GI/M/1/N queue with a variant of multiple working vacations,, Comput. Ind. Eng., 61 (2011), 1296. doi: 10.1016/j.cie.2011.08.002. Google Scholar

show all references

References:
[1]

I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters,, Comput. Oper. Res., 31 (2004), 1537. doi: 10.1016/S0305-0548(03)00107-2. Google Scholar

[2]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201. doi: 10.1016/j.orl.2004.05.006. Google Scholar

[3]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701. doi: 10.1016/j.apm.2006.05.010. Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation,, Perform. Eval., 66 (2009), 356. doi: 10.1016/j.peva.2009.01.005. Google Scholar

[5]

K. C. Chae, H. M. Park and W. S. Yang, A GI/Geo/1 queue with negative and positive customers,, Appl. Math. Model., 34 (2010), 1662. doi: 10.1016/j.apm.2009.09.015. Google Scholar

[6]

R. Chakka and P. G. Harrison, A Markov modulated multi-server queue with negative customers-the MM CPP/GE/c/L G-queue,, Acta Inform., 37 (2001), 881. doi: 10.1007/PL00013307. Google Scholar

[7]

I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations,, Appl. Math. Model., 37 (2013), 1295. doi: 10.1016/j.apm.2012.04.011. Google Scholar

[8]

T. V. Do, Bibliography on G-networks, negative customers and applications,, Math. Comput. Model., 53 (2011), 205. Google Scholar

[9]

S. Gao and Z. Liu, An M/G/1 queue with single working vacation and vacation interruption under bernoulli schedule,, Appl. Math. Model., 37 (2013), 1564. doi: 10.1016/j.apm.2012.04.045. Google Scholar

[10]

S. Gao, J. Wang and D. Zhang, Discrete-time $GI^X$/Geo/1/N queue with negative customers and multiple working vacations,, J. Korean. Stat. Soc., 42 (2013), 515. Google Scholar

[11]

E. Gelenbe, Random neural networks with negative and positive signals and product form solution,, Neural Comput., 1 (1989), 502. doi: 10.1162/neco.1989.1.4.502. Google Scholar

[12]

E. Gelenbe, Product-form queueing networks with negative and positive customers,, J. Appl. Probab., 28 (1991), 656. doi: 10.2307/3214499. Google Scholar

[13]

V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations,, Comput. Ind. Eng., 61 (2011), 629. doi: 10.1016/j.cie.2011.04.018. Google Scholar

[14]

P. G. Harrison, N. M. Patel and E. Pitel, Reliability modelling using G-queues,, Eur. J. Oper. Res., 126 (2000), 273. doi: 10.1016/S0377-2217(99)00478-6. Google Scholar

[15]

J.-H. Li and N. Tian, The discrete-time GI/Geo/1 queue with working vacations and vacation interruption,, Appl. Math. Comput., 185 (2007), 1. doi: 10.1016/j.amc.2006.07.008. Google Scholar

[16]

Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers,, Queueing Syst., 47 (2004), 5. doi: 10.1023/B:QUES.0000032798.65858.19. Google Scholar

[17]

W.-Y. Liu, X.-L. Xu and N.-S. Tian, Stochastic decompositions in the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595. doi: 10.1016/j.orl.2006.12.007. Google Scholar

[18]

L. R. Ronald, Optimization in Operations Research,, New Jersey, (1997). Google Scholar

[19]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (m/m/1/wv),, Perform. Eval., 50 (2002), 41. doi: 10.1016/S0166-5316(02)00057-3. Google Scholar

[20]

J. Wang, B. Liu and J. Li, Transient analysis of an M/G/1 retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118. doi: 10.1016/j.ejor.2007.04.054. Google Scholar

[21]

J. Wang and P. Zhang, A discrete-time retrial queue with negative customers and unreliable server,, Comput. Ind. Eng., 56 (2009), 1216. doi: 10.1016/j.cie.2008.07.010. Google Scholar

[22]

J. Wang, Y. Huang and Z. Dai, A discrete-time on-off source queueing system with negative customers,, Comput. Ind. Eng., 61 (2011), 1226. doi: 10.1016/j.cie.2011.07.013. Google Scholar

[23]

D.-A. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Perform. Eval., 63 (2006), 654. doi: 10.1016/j.peva.2005.05.005. Google Scholar

[24]

J. Wu, Z. Liu and Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations,, Appl. Math. Model., 33 (2009), 4314. doi: 10.1016/j.apm.2009.03.013. Google Scholar

[25]

M. Yu, Y. Tang and Y. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/1/L queue with multiple working vacations and partial batch rejection,, Comput. Ind. Eng., 56 (2009), 1243. Google Scholar

[26]

M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period,, J. Comput. Appl. Math., 235 (2011), 2170. doi: 10.1016/j.cam.2010.10.013. Google Scholar

[27]

M. Zhang and Z. Hou, Steady state analysis of the GI/M/1/N queue with a variant of multiple working vacations,, Comput. Ind. Eng., 61 (2011), 1296. doi: 10.1016/j.cie.2011.08.002. Google Scholar

[1]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[2]

Sofian De Clercq, Wouter Rogiest, Bart Steyaert, Herwig Bruneel. Stochastic decomposition in discrete-time queues with generalized vacations and applications. Journal of Industrial & Management Optimization, 2012, 8 (4) : 925-938. doi: 10.3934/jimo.2012.8.925

[3]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[4]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[5]

Zhanqiang Huo, Wuyi Yue, Naishuo Tian, Shunfu Jin. Performance evaluation for the sleep mode in the IEEE 802.16e based on a queueing model with close-down time and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 511-524. doi: 10.3934/jimo.2009.5.511

[6]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[7]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[8]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[9]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[10]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

[11]

Veena Goswami, Gopinath Panda. Optimal information policy in discrete-time queues with strategic customers. Journal of Industrial & Management Optimization, 2019, 15 (2) : 689-703. doi: 10.3934/jimo.2018065

[12]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019112

[13]

Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453

[14]

Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861

[15]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[16]

Shunfu Jin, Wuyi Yue, Zhanqiang Huo. Performance evaluation for connection oriented service in the next generation Internet. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 749-761. doi: 10.3934/naco.2011.1.749

[17]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[18]

Keiji Tatsumi, Masashi Akao, Ryo Kawachi, Tetsuzo Tanino. Performance evaluation of multiobjective multiclass support vector machines maximizing geometric margins. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 151-169. doi: 10.3934/naco.2011.1.151

[19]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019060

[20]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]