July  2015, 11(3): 779-806. doi: 10.3934/jimo.2015.11.779

On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations

1. 

Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, China

2. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing

Received  September 2013 Revised  May 2014 Published  October 2014

This paper considers a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations, where upon arrival, a negative customer removes one positive (ordinary) customer in service if any is present and disappears immediately; otherwise, it has no effect on the system if the system is empty. As soon as the system becomes empty, the server immediately takes a working vacation. If there are no customers in the system at the end of the working vacation, the server takes another working vacation with probability $p$ or remains dormant in the system with probability $1-p$. Otherwise, the server starts to serve the customers with the normal service rate immediately if there are some customers at the end of a working vacation. This pattern does not terminate until the server has taken $J$ successive working vacations. Steady-state system length distributions at various epochs such as, pre-arrival, arbitrary and outside observer's observation epochs have been obtained. Based on the various system length distributions, we also give some important performance measures including blocking probabilities, mean queue length, probability mass function of waiting time and other performance measures along with some numerical examples. Then, we use the parabolic method to search the optimum value of the normal service rate under a established cost function.
Citation: Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779
References:
[1]

I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters,, Comput. Oper. Res., 31 (2004), 1537.  doi: 10.1016/S0305-0548(03)00107-2.  Google Scholar

[2]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[3]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation,, Perform. Eval., 66 (2009), 356.  doi: 10.1016/j.peva.2009.01.005.  Google Scholar

[5]

K. C. Chae, H. M. Park and W. S. Yang, A GI/Geo/1 queue with negative and positive customers,, Appl. Math. Model., 34 (2010), 1662.  doi: 10.1016/j.apm.2009.09.015.  Google Scholar

[6]

R. Chakka and P. G. Harrison, A Markov modulated multi-server queue with negative customers-the MM CPP/GE/c/L G-queue,, Acta Inform., 37 (2001), 881.  doi: 10.1007/PL00013307.  Google Scholar

[7]

I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations,, Appl. Math. Model., 37 (2013), 1295.  doi: 10.1016/j.apm.2012.04.011.  Google Scholar

[8]

T. V. Do, Bibliography on G-networks, negative customers and applications,, Math. Comput. Model., 53 (2011), 205.   Google Scholar

[9]

S. Gao and Z. Liu, An M/G/1 queue with single working vacation and vacation interruption under bernoulli schedule,, Appl. Math. Model., 37 (2013), 1564.  doi: 10.1016/j.apm.2012.04.045.  Google Scholar

[10]

S. Gao, J. Wang and D. Zhang, Discrete-time $GI^X$/Geo/1/N queue with negative customers and multiple working vacations,, J. Korean. Stat. Soc., 42 (2013), 515.   Google Scholar

[11]

E. Gelenbe, Random neural networks with negative and positive signals and product form solution,, Neural Comput., 1 (1989), 502.  doi: 10.1162/neco.1989.1.4.502.  Google Scholar

[12]

E. Gelenbe, Product-form queueing networks with negative and positive customers,, J. Appl. Probab., 28 (1991), 656.  doi: 10.2307/3214499.  Google Scholar

[13]

V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations,, Comput. Ind. Eng., 61 (2011), 629.  doi: 10.1016/j.cie.2011.04.018.  Google Scholar

[14]

P. G. Harrison, N. M. Patel and E. Pitel, Reliability modelling using G-queues,, Eur. J. Oper. Res., 126 (2000), 273.  doi: 10.1016/S0377-2217(99)00478-6.  Google Scholar

[15]

J.-H. Li and N. Tian, The discrete-time GI/Geo/1 queue with working vacations and vacation interruption,, Appl. Math. Comput., 185 (2007), 1.  doi: 10.1016/j.amc.2006.07.008.  Google Scholar

[16]

Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers,, Queueing Syst., 47 (2004), 5.  doi: 10.1023/B:QUES.0000032798.65858.19.  Google Scholar

[17]

W.-Y. Liu, X.-L. Xu and N.-S. Tian, Stochastic decompositions in the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.  doi: 10.1016/j.orl.2006.12.007.  Google Scholar

[18]

L. R. Ronald, Optimization in Operations Research,, New Jersey, (1997).   Google Scholar

[19]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (m/m/1/wv),, Perform. Eval., 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[20]

J. Wang, B. Liu and J. Li, Transient analysis of an M/G/1 retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.  doi: 10.1016/j.ejor.2007.04.054.  Google Scholar

[21]

J. Wang and P. Zhang, A discrete-time retrial queue with negative customers and unreliable server,, Comput. Ind. Eng., 56 (2009), 1216.  doi: 10.1016/j.cie.2008.07.010.  Google Scholar

[22]

J. Wang, Y. Huang and Z. Dai, A discrete-time on-off source queueing system with negative customers,, Comput. Ind. Eng., 61 (2011), 1226.  doi: 10.1016/j.cie.2011.07.013.  Google Scholar

[23]

D.-A. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Perform. Eval., 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[24]

J. Wu, Z. Liu and Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations,, Appl. Math. Model., 33 (2009), 4314.  doi: 10.1016/j.apm.2009.03.013.  Google Scholar

[25]

M. Yu, Y. Tang and Y. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/1/L queue with multiple working vacations and partial batch rejection,, Comput. Ind. Eng., 56 (2009), 1243.   Google Scholar

[26]

M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period,, J. Comput. Appl. Math., 235 (2011), 2170.  doi: 10.1016/j.cam.2010.10.013.  Google Scholar

[27]

M. Zhang and Z. Hou, Steady state analysis of the GI/M/1/N queue with a variant of multiple working vacations,, Comput. Ind. Eng., 61 (2011), 1296.  doi: 10.1016/j.cie.2011.08.002.  Google Scholar

show all references

References:
[1]

I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters,, Comput. Oper. Res., 31 (2004), 1537.  doi: 10.1016/S0305-0548(03)00107-2.  Google Scholar

[2]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[3]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation,, Perform. Eval., 66 (2009), 356.  doi: 10.1016/j.peva.2009.01.005.  Google Scholar

[5]

K. C. Chae, H. M. Park and W. S. Yang, A GI/Geo/1 queue with negative and positive customers,, Appl. Math. Model., 34 (2010), 1662.  doi: 10.1016/j.apm.2009.09.015.  Google Scholar

[6]

R. Chakka and P. G. Harrison, A Markov modulated multi-server queue with negative customers-the MM CPP/GE/c/L G-queue,, Acta Inform., 37 (2001), 881.  doi: 10.1007/PL00013307.  Google Scholar

[7]

I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations,, Appl. Math. Model., 37 (2013), 1295.  doi: 10.1016/j.apm.2012.04.011.  Google Scholar

[8]

T. V. Do, Bibliography on G-networks, negative customers and applications,, Math. Comput. Model., 53 (2011), 205.   Google Scholar

[9]

S. Gao and Z. Liu, An M/G/1 queue with single working vacation and vacation interruption under bernoulli schedule,, Appl. Math. Model., 37 (2013), 1564.  doi: 10.1016/j.apm.2012.04.045.  Google Scholar

[10]

S. Gao, J. Wang and D. Zhang, Discrete-time $GI^X$/Geo/1/N queue with negative customers and multiple working vacations,, J. Korean. Stat. Soc., 42 (2013), 515.   Google Scholar

[11]

E. Gelenbe, Random neural networks with negative and positive signals and product form solution,, Neural Comput., 1 (1989), 502.  doi: 10.1162/neco.1989.1.4.502.  Google Scholar

[12]

E. Gelenbe, Product-form queueing networks with negative and positive customers,, J. Appl. Probab., 28 (1991), 656.  doi: 10.2307/3214499.  Google Scholar

[13]

V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations,, Comput. Ind. Eng., 61 (2011), 629.  doi: 10.1016/j.cie.2011.04.018.  Google Scholar

[14]

P. G. Harrison, N. M. Patel and E. Pitel, Reliability modelling using G-queues,, Eur. J. Oper. Res., 126 (2000), 273.  doi: 10.1016/S0377-2217(99)00478-6.  Google Scholar

[15]

J.-H. Li and N. Tian, The discrete-time GI/Geo/1 queue with working vacations and vacation interruption,, Appl. Math. Comput., 185 (2007), 1.  doi: 10.1016/j.amc.2006.07.008.  Google Scholar

[16]

Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers,, Queueing Syst., 47 (2004), 5.  doi: 10.1023/B:QUES.0000032798.65858.19.  Google Scholar

[17]

W.-Y. Liu, X.-L. Xu and N.-S. Tian, Stochastic decompositions in the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.  doi: 10.1016/j.orl.2006.12.007.  Google Scholar

[18]

L. R. Ronald, Optimization in Operations Research,, New Jersey, (1997).   Google Scholar

[19]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (m/m/1/wv),, Perform. Eval., 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[20]

J. Wang, B. Liu and J. Li, Transient analysis of an M/G/1 retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.  doi: 10.1016/j.ejor.2007.04.054.  Google Scholar

[21]

J. Wang and P. Zhang, A discrete-time retrial queue with negative customers and unreliable server,, Comput. Ind. Eng., 56 (2009), 1216.  doi: 10.1016/j.cie.2008.07.010.  Google Scholar

[22]

J. Wang, Y. Huang and Z. Dai, A discrete-time on-off source queueing system with negative customers,, Comput. Ind. Eng., 61 (2011), 1226.  doi: 10.1016/j.cie.2011.07.013.  Google Scholar

[23]

D.-A. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Perform. Eval., 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[24]

J. Wu, Z. Liu and Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations,, Appl. Math. Model., 33 (2009), 4314.  doi: 10.1016/j.apm.2009.03.013.  Google Scholar

[25]

M. Yu, Y. Tang and Y. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/1/L queue with multiple working vacations and partial batch rejection,, Comput. Ind. Eng., 56 (2009), 1243.   Google Scholar

[26]

M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period,, J. Comput. Appl. Math., 235 (2011), 2170.  doi: 10.1016/j.cam.2010.10.013.  Google Scholar

[27]

M. Zhang and Z. Hou, Steady state analysis of the GI/M/1/N queue with a variant of multiple working vacations,, Comput. Ind. Eng., 61 (2011), 1296.  doi: 10.1016/j.cie.2011.08.002.  Google Scholar

[1]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[5]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[8]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[16]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]