• Previous Article
    Performance analysis of buffers with train arrivals and correlated output interruptions
  • JIMO Home
  • This Issue
  • Next Article
    On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations
July  2015, 11(3): 807-828. doi: 10.3934/jimo.2015.11.807

Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing

1. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

2. 

Department of Mathematical Sciences and Telecommunication Engineering Program, Korea Advanced Institute of Science and Technology, Daejeon

Received  September 2013 Revised  May 2014 Published  October 2014

In this paper, we consider a multi-channel cognitive radio network with multiple secondary users (SUs) and analyze the performance of users in the network. We assume primary users (PUs) adopt the automatic repeat request (ARQ) protocol at the medium access control layer. We have two main goals. Our first goal is to develop a cross-layer performance model of the cognitive radio network by considering the retransmission characteristics of the ARQ protocol and the interference between PUs and SUs due to imperfect channel sensing. Using the cross-layer performance model we analyze the throughput performance of SUs and the delay performance of PUs.
    Our second goal is to propose an optimal channel sensing method that maximizes the throughput performance of SUs while a given delay requirement of PUs is guaranteed. To this end, using our cross-layer performance model, we formulate an optimization problem and solve it to get an optimal channel sensing method that satisfies the design objectives. Numerical and simulation results are provided to validate our analysis and to investigate the performance of the optimal channel sensing method.
Citation: Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807
References:
[1]

S. Akin and M. C. Gursoy, Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning,, IEEE Trans. on Wireless Comm., 9 (2010), 3354.  doi: 10.1109/TWC.2010.092410.090751.  Google Scholar

[2]

I. F. Akyildiz, B. F. Lo and R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey,, Physical Communication, 4 (2011), 40.  doi: 10.1016/j.phycom.2010.12.003.  Google Scholar

[3]

C-S. Chang, Performance guarantees in communication networks,, Springer, (2000).   Google Scholar

[4]

C. Cormio and K. R. Chowdhury, A Survey on MAC Protocols for Cognitive Radio Networks,, Ad Hoc Networks, 7 (2009), 1315.  doi: 10.1016/j.adhoc.2009.01.002.  Google Scholar

[5]

F. F. Digham, M-S. Alouini and M. K. Simon, On the energy detection of unknown signals over fading channels,, IEEE Tran. on Comm., 55 (2007), 21.  doi: 10.1109/TCOMM.2006.887483.  Google Scholar

[6]

A. A. El-Sherif and K. J. Ray Liu, Joint design of spectrum sensing and channel access in cognitive radio networks,, IEEE Trans. Wireless Comm., 10 (2011), 1743.  doi: 10.1109/TWC.2011.032411.100131.  Google Scholar

[7]

Federal Communications Commission, Spectrum Policy Task Force,, Rep. ET Docket No. 02-135, (2002), 02.   Google Scholar

[8]

Federal Communications Commission, Notice of Proposed Rule Making and Order,, Rep. ET Docket No. 02-222, (2003), 02.   Google Scholar

[9]

G. U. Hwang and S. Roy, Design and analysis of optimal random access policies in cognitive radio networks,, IEEE Transactions on Comm., 60 (2012), 121.  doi: 10.1109/TCOMM.2011.112311.100702.  Google Scholar

[10]

S. C. Jha, M. M. Rashod and V. K. Bhargava, Medium access control in distributed cognitive radio networks,, IEEE Wireless Comm. Mag., 18 (2011), 41.  doi: 10.1109/MWC.2011.5999763.  Google Scholar

[11]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory,, Prentice-Hall, (1998).   Google Scholar

[12]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Models,, SIAM, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[13]

W-Y. Lee and I. F. Akyildiz, Optimal Spectrum Sensing Framework for Cognitive Radio Networks,, IEEE Trans. on Wireless Comm., 7 (2008), 3845.  doi: 10.1109/T-WC.2008.070391.  Google Scholar

[14]

X. Li, Q. Zhao, X. Guan and L. Tong, Optimal cognitive access of markovian channels under tight collision constraints,, IEEE J. Selected Areas in Comm., 29 (2010), 1.  doi: 10.1109/ICC.2010.5502055.  Google Scholar

[15]

Y-C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, Sensing-throughput tradeoff for cognitive radio networks,, IEEE Transactions on Wireless Comm., 7 (2008), 5330.  doi: 10.1109/TWC.2008.060869.  Google Scholar

[16]

S-Y. Lien, C-C. Tseng and K-C. Chen, Carrier sensing based multiple access protocols for cognitive radio networks,, Proc. IEEE ICC, (2008), 3208.  doi: 10.1109/ICC.2008.604.  Google Scholar

[17]

L. Ma, X. Han and C-C. Shen, Dynamic open spectrum sharing for wireless ad hoc networks,, Proc. IEEE DySPAN, (2005), 203.  doi: 10.1109/DYSPAN.2005.1542636.  Google Scholar

[18]

J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal,, IEEE Pers. Commun., 6 (1999), 13.  doi: 10.1109/98.788210.  Google Scholar

[19]

E. C. Y. Peh, Y-C. Liang, Y. L. Guan and Y. Zeng, Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view,, IEEE Trans. on Vech. Tech., 58 (2009), 5294.  doi: 10.1109/TVT.2009.2028030.  Google Scholar

[20]

S. M. Ross, Stochastic Processes,, John Willey & Sons, (1996).   Google Scholar

[21]

A. Singh, M. R. Bhatnagar and R. K. Mallik, Threshold optimization of finite sample based cognitive radio network,, NCC 2012, (2012), 1.  doi: 10.1109/NCC.2012.6176816.  Google Scholar

[22]

H. Su and X. Zhang, Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,, Journal on Selected Areas in Comm., 26 (2008), 118.  doi: 10.1109/JSAC.2008.080111.  Google Scholar

[23]

S. Wang, J. Zhang and L. Tong, Delay analysis for cognitive radio networks with random access: A fluid flow view,, Proc. 2010 IEEE INFOCOM, (2010), 1.  doi: 10.1109/INFCOM.2010.5461943.  Google Scholar

[24]

A. Wyglinski, M. Nekovee and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice,, Elsevier, (2009).   Google Scholar

[25]

M. Xu, and H. Li and X. Gan, Energy efficient sequential sensing for wideband multi-channel cognitive network,, Proc. IEEE ICC, (2011), 1.  doi: 10.1109/icc.2011.5962519.  Google Scholar

[26]

T. Yücek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications,, IEEE Comm. Surveys & Tutorials, 11 (2009), 116.  doi: 10.1109/SURV.2009.090109.  Google Scholar

[27]

Y. H. Zeng, Y.-C. Liang, A. T. Hoang and R. Zhang, A review on spectrum sensing for cognitive radio: Challenges and solutions,, EURASIP J. Advances Signal Process, 2010 (2010).  doi: 10.1155/2010/381465.  Google Scholar

[28]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589.  doi: 10.1109/JSAC.2007.070409.  Google Scholar

[29]

, Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands,, The Institute of Electrical and Electronics Engineering, ().   Google Scholar

show all references

References:
[1]

S. Akin and M. C. Gursoy, Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning,, IEEE Trans. on Wireless Comm., 9 (2010), 3354.  doi: 10.1109/TWC.2010.092410.090751.  Google Scholar

[2]

I. F. Akyildiz, B. F. Lo and R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey,, Physical Communication, 4 (2011), 40.  doi: 10.1016/j.phycom.2010.12.003.  Google Scholar

[3]

C-S. Chang, Performance guarantees in communication networks,, Springer, (2000).   Google Scholar

[4]

C. Cormio and K. R. Chowdhury, A Survey on MAC Protocols for Cognitive Radio Networks,, Ad Hoc Networks, 7 (2009), 1315.  doi: 10.1016/j.adhoc.2009.01.002.  Google Scholar

[5]

F. F. Digham, M-S. Alouini and M. K. Simon, On the energy detection of unknown signals over fading channels,, IEEE Tran. on Comm., 55 (2007), 21.  doi: 10.1109/TCOMM.2006.887483.  Google Scholar

[6]

A. A. El-Sherif and K. J. Ray Liu, Joint design of spectrum sensing and channel access in cognitive radio networks,, IEEE Trans. Wireless Comm., 10 (2011), 1743.  doi: 10.1109/TWC.2011.032411.100131.  Google Scholar

[7]

Federal Communications Commission, Spectrum Policy Task Force,, Rep. ET Docket No. 02-135, (2002), 02.   Google Scholar

[8]

Federal Communications Commission, Notice of Proposed Rule Making and Order,, Rep. ET Docket No. 02-222, (2003), 02.   Google Scholar

[9]

G. U. Hwang and S. Roy, Design and analysis of optimal random access policies in cognitive radio networks,, IEEE Transactions on Comm., 60 (2012), 121.  doi: 10.1109/TCOMM.2011.112311.100702.  Google Scholar

[10]

S. C. Jha, M. M. Rashod and V. K. Bhargava, Medium access control in distributed cognitive radio networks,, IEEE Wireless Comm. Mag., 18 (2011), 41.  doi: 10.1109/MWC.2011.5999763.  Google Scholar

[11]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory,, Prentice-Hall, (1998).   Google Scholar

[12]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Models,, SIAM, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[13]

W-Y. Lee and I. F. Akyildiz, Optimal Spectrum Sensing Framework for Cognitive Radio Networks,, IEEE Trans. on Wireless Comm., 7 (2008), 3845.  doi: 10.1109/T-WC.2008.070391.  Google Scholar

[14]

X. Li, Q. Zhao, X. Guan and L. Tong, Optimal cognitive access of markovian channels under tight collision constraints,, IEEE J. Selected Areas in Comm., 29 (2010), 1.  doi: 10.1109/ICC.2010.5502055.  Google Scholar

[15]

Y-C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, Sensing-throughput tradeoff for cognitive radio networks,, IEEE Transactions on Wireless Comm., 7 (2008), 5330.  doi: 10.1109/TWC.2008.060869.  Google Scholar

[16]

S-Y. Lien, C-C. Tseng and K-C. Chen, Carrier sensing based multiple access protocols for cognitive radio networks,, Proc. IEEE ICC, (2008), 3208.  doi: 10.1109/ICC.2008.604.  Google Scholar

[17]

L. Ma, X. Han and C-C. Shen, Dynamic open spectrum sharing for wireless ad hoc networks,, Proc. IEEE DySPAN, (2005), 203.  doi: 10.1109/DYSPAN.2005.1542636.  Google Scholar

[18]

J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal,, IEEE Pers. Commun., 6 (1999), 13.  doi: 10.1109/98.788210.  Google Scholar

[19]

E. C. Y. Peh, Y-C. Liang, Y. L. Guan and Y. Zeng, Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view,, IEEE Trans. on Vech. Tech., 58 (2009), 5294.  doi: 10.1109/TVT.2009.2028030.  Google Scholar

[20]

S. M. Ross, Stochastic Processes,, John Willey & Sons, (1996).   Google Scholar

[21]

A. Singh, M. R. Bhatnagar and R. K. Mallik, Threshold optimization of finite sample based cognitive radio network,, NCC 2012, (2012), 1.  doi: 10.1109/NCC.2012.6176816.  Google Scholar

[22]

H. Su and X. Zhang, Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,, Journal on Selected Areas in Comm., 26 (2008), 118.  doi: 10.1109/JSAC.2008.080111.  Google Scholar

[23]

S. Wang, J. Zhang and L. Tong, Delay analysis for cognitive radio networks with random access: A fluid flow view,, Proc. 2010 IEEE INFOCOM, (2010), 1.  doi: 10.1109/INFCOM.2010.5461943.  Google Scholar

[24]

A. Wyglinski, M. Nekovee and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice,, Elsevier, (2009).   Google Scholar

[25]

M. Xu, and H. Li and X. Gan, Energy efficient sequential sensing for wideband multi-channel cognitive network,, Proc. IEEE ICC, (2011), 1.  doi: 10.1109/icc.2011.5962519.  Google Scholar

[26]

T. Yücek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications,, IEEE Comm. Surveys & Tutorials, 11 (2009), 116.  doi: 10.1109/SURV.2009.090109.  Google Scholar

[27]

Y. H. Zeng, Y.-C. Liang, A. T. Hoang and R. Zhang, A review on spectrum sensing for cognitive radio: Challenges and solutions,, EURASIP J. Advances Signal Process, 2010 (2010).  doi: 10.1155/2010/381465.  Google Scholar

[28]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589.  doi: 10.1109/JSAC.2007.070409.  Google Scholar

[29]

, Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands,, The Institute of Electrical and Electronics Engineering, ().   Google Scholar

[1]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[2]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[3]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[4]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[5]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[6]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[7]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[8]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[9]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[10]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[11]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[12]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[18]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[19]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[20]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]