-
Previous Article
A novel active DRX mechanism in LTE technology and its performance evaluation
- JIMO Home
- This Issue
-
Next Article
Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing
Performance analysis of buffers with train arrivals and correlated output interruptions
1. | SMACS Research Group, TELIN Department, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent |
2. | Supply Networks and Logistics Research Center, Department of Industrial Management, Ghent University, Technologiepark 903, B-9052 Zwijnaarde |
  First, we provide a general analysis of the state of the buffer system based on a matrix generating functions approach. This also leads to an expression for the mean buffer content. Additionally, we take a closer look at the distributions of the packet delay and the train delay. In order to make matters more concrete, we next present a detailed and explicit analysis of the buffer system in case the output line is governed by a $2$-state Markov process. Some numerical examples help to visualise the influence of the various model parameters.
References:
[1] |
M. M. Ali, X. Zhang and J. F. Hayes, A performance analysis of a discrete-time queueing system with server interruption for modeling wireless ATM multiplexer,, Performance Evaluation, 51 (2003), 1. Google Scholar |
[2] |
E. Altman and A. Jean-Marie, The distribution of delays of dispersed messages in an $M/M/1$ queue,, Proceedings of IEEE INFOCOM '95 (Boston, (1995), 2.
doi: 10.1109/INFCOM.1995.515893. |
[3] |
C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5.
doi: 10.1016/0166-5316(92)90064-N. |
[4] |
H. Bruneel, On the behavior of buffers with random server interruptions,, Performance Evaluation, 3 (1983), 165.
doi: 10.1016/0166-5316(83)90001-9. |
[5] |
H. Bruneel, Buffers with stochastic output interruptions,, Electronics Letters, 19 (1983), 735.
doi: 10.1049/el:19830501. |
[6] |
H. Bruneel, Packet delay and queue length for statistical multiplexers with low-speed access lines,, Computer Networks and ISDN Systems, 25 (1993), 1267.
doi: 10.1016/0169-7552(93)90018-Y. |
[7] |
H. Bruneel, Calculation of message delays and message waiting times in switching elements with slow access lines,, IEEE Transactions on Communications, 42 (1994), 255.
doi: 10.1109/TCOMM.1994.577026. |
[8] |
B. D. Choi, D. I. Choi, Y. Lee and D. K. Sung, Priority queueing system with fixed-length packet-train arrivals,, IEE Proceedings-Communications, 145 (1998), 331.
doi: 10.1049/ip-com:19982288. |
[9] |
A. Chydzinski, Time to reach buffer capacity in a BMAP queue,, Stochastic Models, 23 (2007), 195.
doi: 10.1080/15326340701300746. |
[10] |
I. Cidon, A. Khamisy and M. Sidi, On queueing delays of dispersed messages,, Queueing Systems, 15 (1994), 325.
doi: 10.1007/BF01189244. |
[11] |
I. Cidon, A. Khamisy and M. Sidi, Delay, jitter and threshold crossing in ATM systems with dispersed messages,, Performance Evaluation, 29 (1997), 85.
doi: 10.1016/S0166-5316(96)00006-5. |
[12] |
J. Daigle, Message delays at packet-switching nodes serving multiple classes,, IEEE Transactions on Communications, 38 (1990), 447.
doi: 10.1109/26.52655. |
[13] |
M. Dowell and P. Jarrat, A modified regula falsi method for computing the root of an equation,, BIT Numerical Mathematics, 11 (1971), 168.
|
[14] |
K. Elsayed and H. Perros, The superposition of discrete-time Markov renewal processes with an application to statistical multiplexing of bursty traffic sources,, Applied Mathematics and Computation, 115 (2000), 43.
doi: 10.1016/S0096-3003(99)00134-4. |
[15] |
B. Feyaerts, S. De Vuyst, H. Bruneel and S. Wittevrongel, Analysis of discrete-time buffers with heterogeneous session-based arrivals and general session lengths,, Computers and Operations Research, 39 (2012), 2905.
doi: 10.1016/j.cor.2011.11.023. |
[16] |
D. Fiems and H. Bruneel, A note on the discretization of Little's result,, Operations Research Letters, 30 (2002), 17.
doi: 10.1016/S0167-6377(01)00112-2. |
[17] |
D. Fiems, B. Steyaert and H. Bruneel, Discrete-time queues with generally distributed service times and renewal-type server interruptions,, Performance Evaluation, 55 (2004), 277.
doi: 10.1016/j.peva.2003.08.004. |
[18] |
H. R. Gail, S. L. Hantler, A. G. Konheim and B. A. Taylor, An analysis of a class of telecommunication models,, Performance Evaluation, 21 (1994), 151.
doi: 10.1016/0166-5316(94)90032-9. |
[19] |
H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of $M/G/1$ and $G/M/1$ type Markov chains,, Advances in Applied Probability, 28 (1996), 114.
doi: 10.2307/1427915. |
[20] |
L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analytics traffic model of a web server,, Electronics Letters, 44 (2008), 61.
doi: 10.1049/el:20083020. |
[21] |
L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Discrete-time buffer systems with session-based arrival streams,, Performance Evaluation, 67 (2010), 432.
doi: 10.1016/j.peva.2009.12.007. |
[22] |
G. U. Hwang and B. D. Choi, Closed-form expressions on the geometric tail behavior of statistical multiplexers with heterogeneous traffic,, IEEE Transactions on Communications, 46 (1998), 1575. Google Scholar |
[23] |
F. Ishizaki, Decomposition property in a discrete-time queue with multiple input streams and service interruptions,, Journal of Applied Probability, 41 (2004), 524.
doi: 10.1239/jap/1082999083. |
[24] |
F. Kamoun, Performance analysis of a discrete-time queueing system with a correlated train arrival process,, Performance Evaluation, 63 (2006), 315. Google Scholar |
[25] |
F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated Markovian interruption process,, Computers & Operations Research, 35 (2008), 3969.
doi: 10.1016/j.cor.2007.06.001. |
[26] |
F. Kamoun, Performance evaluation of a queueing system with correlated packet-trains and server interruption,, Telecommunication Systems, 41 (2009), 267. Google Scholar |
[27] |
K. Laevens and H. Bruneel, Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers,, European Journal of Operations Research, 85 (1995), 161.
doi: 10.1016/0377-2217(93)E0148-Q. |
[28] |
D. S. Lee, Analysis of a single server queue with semi-Markovian service interruption,, Queueing Systems, 27 (1997), 153.
doi: 10.1023/A:1019162014745. |
[29] |
D. M. Lucantoni, K. S. Meier-Hellstern and M. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes,, Advances in Applied Probability, 22 (1990), 676.
doi: 10.2307/1427464. |
[30] |
D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process,, Stochastic Models, 7 (1991), 1.
doi: 10.1080/15326349108807174. |
[31] |
H. Masuyama and T. Takine, Stationary queue length in a FIFO single server queue with service interruptions and multiple batch Markovian arrival streams,, Journal of the Operations Research Society of Japan, 46 (2003), 319.
|
[32] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra,, SIAM, (2000).
doi: 10.1137/1.9780898719512. |
[33] |
I. Mitrani, Modelling of Computer and Communication Systems,, Cambridge University Press, (1987). Google Scholar |
[34] |
A. Mokhtar and M. Azizoglu, Analysis of state-dependent probabilistic server interruptions in discrete-time queues,, IEEE Communications Letters, 8 (2004), 544.
doi: 10.1109/LCOMM.2004.833827. |
[35] |
M. Neuts, Structured Stochastic Matrices of $M/G/1$ type and Their Applications,, New York: Marcel Dekker, (1989).
|
[36] |
K. Sohraby, On the theory of general ON-OFF sources with applications in high-speed networks,, Proceedings of IEEE INFOCOM '93 (San Francisco, (1993), 401.
doi: 10.1109/INFCOM.1993.253336. |
[37] |
J. Walraevens, S. Wittevrongel and H. Bruneel, A discrete-time priority queue with train arrivals,, Stochastic Models, 23 (2007), 489.
doi: 10.1080/15326340701471158. |
[38] |
S. Wittevrongel and H. Bruneel, Correlation effects in ATM queues due to data format conversions,, Performance Evaluation, 32 (1998), 35.
doi: 10.1016/S0166-5316(97)00015-1. |
[39] |
S. Wittevrongel, Discrete-time buffers with variable-length train arrivals,, Electronics Letters, 34 (1998), 1719.
doi: 10.1049/el:19981248. |
[40] |
S. Wittevrongel, S. De Vuyst and H. Bruneel, Analysis of discrete-time buffers with general session-based arrivals,, 16th International conference on analytical and stochastic modelling techniques and applications (ASMTA) Madrid, 5513 (2009), 189.
doi: 10.1007/978-3-642-02205-0_14. |
[41] |
Y. Xiong, H. Bruneel, Buffer behavior of statistical multiplexers with correlated train arrivals,, International Journal of Electronics and Communications, 51 (1997), 178. Google Scholar |
show all references
References:
[1] |
M. M. Ali, X. Zhang and J. F. Hayes, A performance analysis of a discrete-time queueing system with server interruption for modeling wireless ATM multiplexer,, Performance Evaluation, 51 (2003), 1. Google Scholar |
[2] |
E. Altman and A. Jean-Marie, The distribution of delays of dispersed messages in an $M/M/1$ queue,, Proceedings of IEEE INFOCOM '95 (Boston, (1995), 2.
doi: 10.1109/INFCOM.1995.515893. |
[3] |
C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5.
doi: 10.1016/0166-5316(92)90064-N. |
[4] |
H. Bruneel, On the behavior of buffers with random server interruptions,, Performance Evaluation, 3 (1983), 165.
doi: 10.1016/0166-5316(83)90001-9. |
[5] |
H. Bruneel, Buffers with stochastic output interruptions,, Electronics Letters, 19 (1983), 735.
doi: 10.1049/el:19830501. |
[6] |
H. Bruneel, Packet delay and queue length for statistical multiplexers with low-speed access lines,, Computer Networks and ISDN Systems, 25 (1993), 1267.
doi: 10.1016/0169-7552(93)90018-Y. |
[7] |
H. Bruneel, Calculation of message delays and message waiting times in switching elements with slow access lines,, IEEE Transactions on Communications, 42 (1994), 255.
doi: 10.1109/TCOMM.1994.577026. |
[8] |
B. D. Choi, D. I. Choi, Y. Lee and D. K. Sung, Priority queueing system with fixed-length packet-train arrivals,, IEE Proceedings-Communications, 145 (1998), 331.
doi: 10.1049/ip-com:19982288. |
[9] |
A. Chydzinski, Time to reach buffer capacity in a BMAP queue,, Stochastic Models, 23 (2007), 195.
doi: 10.1080/15326340701300746. |
[10] |
I. Cidon, A. Khamisy and M. Sidi, On queueing delays of dispersed messages,, Queueing Systems, 15 (1994), 325.
doi: 10.1007/BF01189244. |
[11] |
I. Cidon, A. Khamisy and M. Sidi, Delay, jitter and threshold crossing in ATM systems with dispersed messages,, Performance Evaluation, 29 (1997), 85.
doi: 10.1016/S0166-5316(96)00006-5. |
[12] |
J. Daigle, Message delays at packet-switching nodes serving multiple classes,, IEEE Transactions on Communications, 38 (1990), 447.
doi: 10.1109/26.52655. |
[13] |
M. Dowell and P. Jarrat, A modified regula falsi method for computing the root of an equation,, BIT Numerical Mathematics, 11 (1971), 168.
|
[14] |
K. Elsayed and H. Perros, The superposition of discrete-time Markov renewal processes with an application to statistical multiplexing of bursty traffic sources,, Applied Mathematics and Computation, 115 (2000), 43.
doi: 10.1016/S0096-3003(99)00134-4. |
[15] |
B. Feyaerts, S. De Vuyst, H. Bruneel and S. Wittevrongel, Analysis of discrete-time buffers with heterogeneous session-based arrivals and general session lengths,, Computers and Operations Research, 39 (2012), 2905.
doi: 10.1016/j.cor.2011.11.023. |
[16] |
D. Fiems and H. Bruneel, A note on the discretization of Little's result,, Operations Research Letters, 30 (2002), 17.
doi: 10.1016/S0167-6377(01)00112-2. |
[17] |
D. Fiems, B. Steyaert and H. Bruneel, Discrete-time queues with generally distributed service times and renewal-type server interruptions,, Performance Evaluation, 55 (2004), 277.
doi: 10.1016/j.peva.2003.08.004. |
[18] |
H. R. Gail, S. L. Hantler, A. G. Konheim and B. A. Taylor, An analysis of a class of telecommunication models,, Performance Evaluation, 21 (1994), 151.
doi: 10.1016/0166-5316(94)90032-9. |
[19] |
H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of $M/G/1$ and $G/M/1$ type Markov chains,, Advances in Applied Probability, 28 (1996), 114.
doi: 10.2307/1427915. |
[20] |
L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analytics traffic model of a web server,, Electronics Letters, 44 (2008), 61.
doi: 10.1049/el:20083020. |
[21] |
L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Discrete-time buffer systems with session-based arrival streams,, Performance Evaluation, 67 (2010), 432.
doi: 10.1016/j.peva.2009.12.007. |
[22] |
G. U. Hwang and B. D. Choi, Closed-form expressions on the geometric tail behavior of statistical multiplexers with heterogeneous traffic,, IEEE Transactions on Communications, 46 (1998), 1575. Google Scholar |
[23] |
F. Ishizaki, Decomposition property in a discrete-time queue with multiple input streams and service interruptions,, Journal of Applied Probability, 41 (2004), 524.
doi: 10.1239/jap/1082999083. |
[24] |
F. Kamoun, Performance analysis of a discrete-time queueing system with a correlated train arrival process,, Performance Evaluation, 63 (2006), 315. Google Scholar |
[25] |
F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated Markovian interruption process,, Computers & Operations Research, 35 (2008), 3969.
doi: 10.1016/j.cor.2007.06.001. |
[26] |
F. Kamoun, Performance evaluation of a queueing system with correlated packet-trains and server interruption,, Telecommunication Systems, 41 (2009), 267. Google Scholar |
[27] |
K. Laevens and H. Bruneel, Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers,, European Journal of Operations Research, 85 (1995), 161.
doi: 10.1016/0377-2217(93)E0148-Q. |
[28] |
D. S. Lee, Analysis of a single server queue with semi-Markovian service interruption,, Queueing Systems, 27 (1997), 153.
doi: 10.1023/A:1019162014745. |
[29] |
D. M. Lucantoni, K. S. Meier-Hellstern and M. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes,, Advances in Applied Probability, 22 (1990), 676.
doi: 10.2307/1427464. |
[30] |
D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process,, Stochastic Models, 7 (1991), 1.
doi: 10.1080/15326349108807174. |
[31] |
H. Masuyama and T. Takine, Stationary queue length in a FIFO single server queue with service interruptions and multiple batch Markovian arrival streams,, Journal of the Operations Research Society of Japan, 46 (2003), 319.
|
[32] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra,, SIAM, (2000).
doi: 10.1137/1.9780898719512. |
[33] |
I. Mitrani, Modelling of Computer and Communication Systems,, Cambridge University Press, (1987). Google Scholar |
[34] |
A. Mokhtar and M. Azizoglu, Analysis of state-dependent probabilistic server interruptions in discrete-time queues,, IEEE Communications Letters, 8 (2004), 544.
doi: 10.1109/LCOMM.2004.833827. |
[35] |
M. Neuts, Structured Stochastic Matrices of $M/G/1$ type and Their Applications,, New York: Marcel Dekker, (1989).
|
[36] |
K. Sohraby, On the theory of general ON-OFF sources with applications in high-speed networks,, Proceedings of IEEE INFOCOM '93 (San Francisco, (1993), 401.
doi: 10.1109/INFCOM.1993.253336. |
[37] |
J. Walraevens, S. Wittevrongel and H. Bruneel, A discrete-time priority queue with train arrivals,, Stochastic Models, 23 (2007), 489.
doi: 10.1080/15326340701471158. |
[38] |
S. Wittevrongel and H. Bruneel, Correlation effects in ATM queues due to data format conversions,, Performance Evaluation, 32 (1998), 35.
doi: 10.1016/S0166-5316(97)00015-1. |
[39] |
S. Wittevrongel, Discrete-time buffers with variable-length train arrivals,, Electronics Letters, 34 (1998), 1719.
doi: 10.1049/el:19981248. |
[40] |
S. Wittevrongel, S. De Vuyst and H. Bruneel, Analysis of discrete-time buffers with general session-based arrivals,, 16th International conference on analytical and stochastic modelling techniques and applications (ASMTA) Madrid, 5513 (2009), 189.
doi: 10.1007/978-3-642-02205-0_14. |
[41] |
Y. Xiong, H. Bruneel, Buffer behavior of statistical multiplexers with correlated train arrivals,, International Journal of Electronics and Communications, 51 (1997), 178. Google Scholar |
[1] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[2] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[3] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[4] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[5] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[6] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[7] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[8] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[9] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[10] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[11] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[12] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[13] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[14] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[15] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[16] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[17] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[18] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[19] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[20] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]