-
Previous Article
Statistical process control optimization with variable sampling interval and nonlinear expected loss
- JIMO Home
- This Issue
-
Next Article
Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved
Optimization analysis of the machine repair problem with multiple vacations and working breakdowns
1. | Department of Business Administration, National Formosa University, Huwei, Yunlin, 63201 |
References:
[1] |
M. Clerc, Particle Swarm Optimization, Translated from the 2005 French original, ISTE, London, 2006.
doi: 10.1002/9780470612163. |
[2] |
B. T. Doshi, Queueing systems with vacations-a Survey, Queueing Systems, 1 (1986), 29-66.
doi: 10.1007/BF01149327. |
[3] |
R. C. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources, in Proceedings of IEEE International Conference on Evolutionary Computation, Coex, Seoul, 1 (2001), 81-86.
doi: 10.1109/CEC.2001.934374. |
[4] |
R. C. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementations, Morgan Kaufmann, Burlington, 2007. |
[5] |
S. W. Fuhrmann and R. B. Cooper, Stochastic decompositions in the M/G/1 queue with generalize vacations, Operations Research, 33 (1995), 1117-1129.
doi: 10.1287/opre.33.5.1117. |
[6] |
M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John-Wiley & Sons, Inc., New York, 2007.
doi: 10.1002/9780470172261. |
[7] |
N. Gharbi and M. Ioualalen, Numerical investigation of finite-source multi server systems with different vacation policies, Journal of Computational and Applied Mathematics, 234 (2010), 625-635.
doi: 10.1016/j.cam.2009.11.040. |
[8] |
W. J. Gray, P. P. Wang and M. Scott, A vacation queueing model with service breakdowns, Applied Mathematical Modelling, 24 (2000), 391-400.
doi: 10.1016/S0307-904X(99)00048-7. |
[9] |
S. M. Gupta, N-policy queueing system with finite source and warm spares, Journal of Operational Research Society of India, 36 (1999), 189-217. |
[10] |
S. M. Gupta, Machine interference problem with warm spares, sever vacations and exhaustive service, Performance Evaluation, 29 (1997), 195-211. |
[11] |
L. Haque and M. J. Armstrong, A survey of the machine interference problem, European Journal of Operational Research, 179 (2007), 469-482.
doi: 10.1016/j.ejor.2006.02.036. |
[12] |
J. H. Holland, Adaptation in Natural and Artificial Systems, An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor, Mich., 1975. |
[13] |
M. Jain and R. S. Maheshwari, N-policy for a machine repair system with spares and reneging, Applied Mathematical Modelling, 28 (2004), 513-531.
doi: 10.1016/j.apm.2003.10.013. |
[14] |
J. Jia and S. Wu, A replacement policy for a repairable system with its repairman having multiple vacations, Computers and Industrial Engineering, 57 (2009), 156-160.
doi: 10.1016/j.cie.2008.11.003. |
[15] |
F. Karaesmen and S. M. Gupta, The finite GI/M/1 queue with server vacations, Journal of the Operational Research Society, 47 (1996), 817-828.
doi: 10.2307/3010289. |
[16] |
J. C. Ke, The optimal control of an M/G/1 queueing system with server vacations, startup and breakdowns, Computers and Industrial Engineering, 44 (2003), 567-579.
doi: 10.1016/S0360-8352(02)00235-8. |
[17] |
J. C. Ke, Vacation policies for machine interference problem with an unreliable server and state-dependent service rate, Journal of the Chinese Institute of Engineers, 23 (2006), 100-114. |
[18] |
J. C. Ke and C. H. Lin, Sensitivity analysis of machine repair problems in manufacturing systems with service interruptions, Applied Mathematical Modelling, 32 (2008), 2087-2105.
doi: 10.1016/j.apm.2007.07.004. |
[19] |
J. C. Ke and C. H. Lin, A markov repairable system involving an imperfect service station with multiple vacations, Asia Pacific Journal of Operational Research, 22 (2005), 555-582.
doi: 10.1142/S021759590500073X. |
[20] |
J. C. Ke, C. H. Lin, H. I. Huang and Z. G. Zhang, An algorithm analysis of multi-server vacation model with service interruptions, Computers and Industrial Engineering, 61 (2011), 1302-1308.
doi: 10.1016/j.cie.2011.08.003. |
[21] |
J. C. Ke and K. H. Wang, Cost analysis of the M/M/R machine repair problem with balking, reneging, and server breakdowns, Journal of the Operational Research Society, 50 (1999), 275-282.
doi: 10.2307/3010691. |
[22] |
J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares, Applied Mathematical Modelling, 31 (2007), 880-894.
doi: 10.1016/j.apm.2006.02.009. |
[23] |
J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, (1995), 1942-1948. |
[24] |
J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence, Morgan Kaufmann, CA, 2001. |
[25] |
B. K. Kumar and S. P. Madheswari, An M/M/2 queueing system with heterogeneous servers and multiple vacations, Mathematical and Computer Modelling, 41 (2005), 1415-1429.
doi: 10.1016/j.mcm.2005.02.002. |
[26] |
Y. Li and J. Xu, A deteriorating system with its repairman having multiple vacations, Applied Mathematics and Computation, 217 (2011), 4980-4989.
doi: 10.1016/j.amc.2010.11.048. |
[27] |
C. J. Lin and C. Y. Lee, Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimization, International Journal of Systems and Science, 41 (2010), 381-395. |
[28] |
C. D. Liou, Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method'', Journal of Industrial and Management Optimization, 8 (2012), 727-732.
doi: 10.3934/jimo.2012.8.727. |
[29] |
L. D. Servi and S. G. Finn, M/M/1 queue with working vacation (M/M/1/WV), Performance Evaluation, 50 (2002), 41-52.
doi: 10.1016/S0166-5316(02)00057-3. |
[30] |
Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization, Lecture Notes in Computer Science, 1447 (1998), 591-600.
doi: 10.1007/BFb0040810. |
[31] |
K. E. Stecke and J. E. Aronson, Review of operator/machine interference models, International Journal of Production Research, 23 (1985), 129-151.
doi: 10.1080/00207548508904696. |
[32] |
N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, International Series in Operations Research and Management Science, Springer-Verlag, New York, LLC 2006. |
[33] |
K. H. Wang, Profit analysis of the MRP with a single service station subject to breakdowns, Journal of the Operational Research Society, 41 (1990), 1153-1160. |
[34] |
K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method, Journal of Computational and Applied Mathematics, 233 (2009), 449-458.
doi: 10.1016/j.cam.2009.07.043. |
[35] |
K. H. Wang and M. Y. Kuo, Profit analysis of the M/Ek/1 machine repair problem with a non-reliable service station, Computers and Industrial Engineering, 32 (1997), 587-594.
doi: 10.1016/S0360-8352(96)00313-0. |
[36] |
K. H. Wang, C. D. Liou and Y. H. Lin, Comparative analysis of the machine repair problem with imperfect coverage and service pressure condition, Applied Mathematical Modelling, 37 (2013), 2870-2880.
doi: 10.1016/j.apm.2012.06.024. |
[37] |
K. H. Wang, C. D. Liou and Y. L. Wang, Profit Optimization of the Multiple-Vacation Machine Repair Problem Using Particle Swarm Optimization, International Journal of Systems and Science, 2014, (Accepted DOI:10.1080/00207721.2012.757378). |
[38] |
L. Yuan, Reliability analysis for a k-out-of-n: G system with redundant dependency and repairmen having multiple vacations, Applied Mathematics and Computation, 218 (2012), 11959-11969.
doi: 10.1016/j.amc.2012.06.006. |
[39] |
D. Yue, J. Yu and W. Yue, A Markovian queue with two heterogeneous servers and multiple vacations, Journal of Industrial and Management Optimization, 5 (2009), 453-465.
doi: 10.3934/jimo.2009.5.453. |
[40] |
D. Yue, W. Yue, Z. Saffer and X. Chen, Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy, Journal of Industrial and Management Optimization, 10 (2014), 89-112.
doi: 10.3934/jimo.2014.10.89. |
show all references
References:
[1] |
M. Clerc, Particle Swarm Optimization, Translated from the 2005 French original, ISTE, London, 2006.
doi: 10.1002/9780470612163. |
[2] |
B. T. Doshi, Queueing systems with vacations-a Survey, Queueing Systems, 1 (1986), 29-66.
doi: 10.1007/BF01149327. |
[3] |
R. C. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources, in Proceedings of IEEE International Conference on Evolutionary Computation, Coex, Seoul, 1 (2001), 81-86.
doi: 10.1109/CEC.2001.934374. |
[4] |
R. C. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementations, Morgan Kaufmann, Burlington, 2007. |
[5] |
S. W. Fuhrmann and R. B. Cooper, Stochastic decompositions in the M/G/1 queue with generalize vacations, Operations Research, 33 (1995), 1117-1129.
doi: 10.1287/opre.33.5.1117. |
[6] |
M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John-Wiley & Sons, Inc., New York, 2007.
doi: 10.1002/9780470172261. |
[7] |
N. Gharbi and M. Ioualalen, Numerical investigation of finite-source multi server systems with different vacation policies, Journal of Computational and Applied Mathematics, 234 (2010), 625-635.
doi: 10.1016/j.cam.2009.11.040. |
[8] |
W. J. Gray, P. P. Wang and M. Scott, A vacation queueing model with service breakdowns, Applied Mathematical Modelling, 24 (2000), 391-400.
doi: 10.1016/S0307-904X(99)00048-7. |
[9] |
S. M. Gupta, N-policy queueing system with finite source and warm spares, Journal of Operational Research Society of India, 36 (1999), 189-217. |
[10] |
S. M. Gupta, Machine interference problem with warm spares, sever vacations and exhaustive service, Performance Evaluation, 29 (1997), 195-211. |
[11] |
L. Haque and M. J. Armstrong, A survey of the machine interference problem, European Journal of Operational Research, 179 (2007), 469-482.
doi: 10.1016/j.ejor.2006.02.036. |
[12] |
J. H. Holland, Adaptation in Natural and Artificial Systems, An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor, Mich., 1975. |
[13] |
M. Jain and R. S. Maheshwari, N-policy for a machine repair system with spares and reneging, Applied Mathematical Modelling, 28 (2004), 513-531.
doi: 10.1016/j.apm.2003.10.013. |
[14] |
J. Jia and S. Wu, A replacement policy for a repairable system with its repairman having multiple vacations, Computers and Industrial Engineering, 57 (2009), 156-160.
doi: 10.1016/j.cie.2008.11.003. |
[15] |
F. Karaesmen and S. M. Gupta, The finite GI/M/1 queue with server vacations, Journal of the Operational Research Society, 47 (1996), 817-828.
doi: 10.2307/3010289. |
[16] |
J. C. Ke, The optimal control of an M/G/1 queueing system with server vacations, startup and breakdowns, Computers and Industrial Engineering, 44 (2003), 567-579.
doi: 10.1016/S0360-8352(02)00235-8. |
[17] |
J. C. Ke, Vacation policies for machine interference problem with an unreliable server and state-dependent service rate, Journal of the Chinese Institute of Engineers, 23 (2006), 100-114. |
[18] |
J. C. Ke and C. H. Lin, Sensitivity analysis of machine repair problems in manufacturing systems with service interruptions, Applied Mathematical Modelling, 32 (2008), 2087-2105.
doi: 10.1016/j.apm.2007.07.004. |
[19] |
J. C. Ke and C. H. Lin, A markov repairable system involving an imperfect service station with multiple vacations, Asia Pacific Journal of Operational Research, 22 (2005), 555-582.
doi: 10.1142/S021759590500073X. |
[20] |
J. C. Ke, C. H. Lin, H. I. Huang and Z. G. Zhang, An algorithm analysis of multi-server vacation model with service interruptions, Computers and Industrial Engineering, 61 (2011), 1302-1308.
doi: 10.1016/j.cie.2011.08.003. |
[21] |
J. C. Ke and K. H. Wang, Cost analysis of the M/M/R machine repair problem with balking, reneging, and server breakdowns, Journal of the Operational Research Society, 50 (1999), 275-282.
doi: 10.2307/3010691. |
[22] |
J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares, Applied Mathematical Modelling, 31 (2007), 880-894.
doi: 10.1016/j.apm.2006.02.009. |
[23] |
J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, (1995), 1942-1948. |
[24] |
J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence, Morgan Kaufmann, CA, 2001. |
[25] |
B. K. Kumar and S. P. Madheswari, An M/M/2 queueing system with heterogeneous servers and multiple vacations, Mathematical and Computer Modelling, 41 (2005), 1415-1429.
doi: 10.1016/j.mcm.2005.02.002. |
[26] |
Y. Li and J. Xu, A deteriorating system with its repairman having multiple vacations, Applied Mathematics and Computation, 217 (2011), 4980-4989.
doi: 10.1016/j.amc.2010.11.048. |
[27] |
C. J. Lin and C. Y. Lee, Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimization, International Journal of Systems and Science, 41 (2010), 381-395. |
[28] |
C. D. Liou, Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method'', Journal of Industrial and Management Optimization, 8 (2012), 727-732.
doi: 10.3934/jimo.2012.8.727. |
[29] |
L. D. Servi and S. G. Finn, M/M/1 queue with working vacation (M/M/1/WV), Performance Evaluation, 50 (2002), 41-52.
doi: 10.1016/S0166-5316(02)00057-3. |
[30] |
Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization, Lecture Notes in Computer Science, 1447 (1998), 591-600.
doi: 10.1007/BFb0040810. |
[31] |
K. E. Stecke and J. E. Aronson, Review of operator/machine interference models, International Journal of Production Research, 23 (1985), 129-151.
doi: 10.1080/00207548508904696. |
[32] |
N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, International Series in Operations Research and Management Science, Springer-Verlag, New York, LLC 2006. |
[33] |
K. H. Wang, Profit analysis of the MRP with a single service station subject to breakdowns, Journal of the Operational Research Society, 41 (1990), 1153-1160. |
[34] |
K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method, Journal of Computational and Applied Mathematics, 233 (2009), 449-458.
doi: 10.1016/j.cam.2009.07.043. |
[35] |
K. H. Wang and M. Y. Kuo, Profit analysis of the M/Ek/1 machine repair problem with a non-reliable service station, Computers and Industrial Engineering, 32 (1997), 587-594.
doi: 10.1016/S0360-8352(96)00313-0. |
[36] |
K. H. Wang, C. D. Liou and Y. H. Lin, Comparative analysis of the machine repair problem with imperfect coverage and service pressure condition, Applied Mathematical Modelling, 37 (2013), 2870-2880.
doi: 10.1016/j.apm.2012.06.024. |
[37] |
K. H. Wang, C. D. Liou and Y. L. Wang, Profit Optimization of the Multiple-Vacation Machine Repair Problem Using Particle Swarm Optimization, International Journal of Systems and Science, 2014, (Accepted DOI:10.1080/00207721.2012.757378). |
[38] |
L. Yuan, Reliability analysis for a k-out-of-n: G system with redundant dependency and repairmen having multiple vacations, Applied Mathematics and Computation, 218 (2012), 11959-11969.
doi: 10.1016/j.amc.2012.06.006. |
[39] |
D. Yue, J. Yu and W. Yue, A Markovian queue with two heterogeneous servers and multiple vacations, Journal of Industrial and Management Optimization, 5 (2009), 453-465.
doi: 10.3934/jimo.2009.5.453. |
[40] |
D. Yue, W. Yue, Z. Saffer and X. Chen, Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy, Journal of Industrial and Management Optimization, 10 (2014), 89-112.
doi: 10.3934/jimo.2014.10.89. |
[1] |
Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial and Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1 |
[2] |
Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002 |
[3] |
Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial and Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839 |
[4] |
Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1135-1148. doi: 10.3934/jimo.2018196 |
[5] |
Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895 |
[6] |
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066 |
[7] |
Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631 |
[8] |
Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial and Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038 |
[9] |
Amir Mohammad Fakoor Saghih, Azam Modares. A new dynamic model to optimize the reliability of the series-parallel systems under warm standby components. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021189 |
[10] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[11] |
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267 |
[12] |
Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009 |
[13] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[14] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 321-337. doi: 10.3934/naco.2021008 |
[15] |
Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102 |
[16] |
Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001 |
[17] |
Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31 |
[18] |
Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial and Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779 |
[19] |
Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial and Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453 |
[20] |
Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems and Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]