July  2015, 11(3): 849-866. doi: 10.3934/jimo.2015.11.849

A novel active DRX mechanism in LTE technology and its performance evaluation

1. 

School of Information Science and Engineering, Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Yanshan University, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501

3. 

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

4. 

Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest 1000, Hungary

Received  September 2013 Revised  June 2014 Published  October 2014

With the development of communication technology, the functions of the mobile terminals are becoming ever more enhanced, and the energy requirements for the terminals become harder than before. In this paper we propose a novel Active Discontinuous Reception (DRX) mechanism with a sleep-delay strategy in the Long Term Evolution (LTE) technology in order to reduce the average latency while saving more energy in 4G networks. The key idea is to influence the control of the downlink transmission on that way that the system would go to sleep only when there is no data frame arrival within the sleep-delay timer. Considering several logical channels for one connection, we model the network using the novel Active DRX mechanism with a sleep-delay strategy as a multiple synchronous vacation queueing system with a wake-up period and a sleep-delay. We derive several performance measures, such as the energy saving ratio, the system blocking ratio and the average latency. We also provide numerical results by means of analysis and simulation to show the validity of the novel Active DRX mechanism. Finally by constructing a profit function, we optimize several system parameters in terms of the number of the logical channels for one connection, the time lengths of the sleep-delay timer and the sleep period.
Citation: Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849
References:
[1]

Proceedings of IEEE International Conference on Communication Systems, (2010), 146-150. doi: 10.1109/ICCS.2010.5686367.  Google Scholar

[2]

Journal of Industrial and Management Optimization, 8 (2012), 841-860. doi: 10.3934/jimo.2012.8.841.  Google Scholar

[3]

IEEE Communications Magazine, 47 (2009), 48-55. doi: 10.1109/MCOM.2009.5116800.  Google Scholar

[4]

European Transactions on Telecommunications, 12 (2001), 357–358. doi: 10.1002/ett.4460120413.  Google Scholar

[5]

Proceedings of GLOBECOM Workshops, (2011), 1062-1066. doi: 10.1109/GLOCOMW.2011.6162340.  Google Scholar

[6]

Proceedings of IEEE International Conference on Communications, (2012), 1964-1969. doi: 10.1109/ICC.2012.6363708.  Google Scholar

[7]

Proceedings of IEEE Vehicular Technology Conference (VTC Fall), (2011), 1-5. doi: 10.1109/VETECF.2011.6092961.  Google Scholar

[8]

Proceedings of IEEE Vehicular Technology Conference (VTC Fall), (2012), 1-5. doi: 10.1109/VTCFall.2012.6399035.  Google Scholar

[9]

Journal of Industrial and Management Optimization, 10 (2014), 151-166. doi: 10.3934/jimo.2014.10.151.  Google Scholar

[10]

Proceedings of IEEE Vehicular Technology Conference (VTC Spring), (2012), 1-5. doi: 10.1109/VETECS.2012.6240102.  Google Scholar

[11]

Proceedings of Wireless Communications and Networking Conference, (2013), 568-573. doi: 10.1109/WCNC.2013.6554626.  Google Scholar

[12]

IEEE Transactions on Wireless Communications, 12 (2013), 89-99. doi: 10.1109/TWC.2012.113012.111776.  Google Scholar

[13]

Proceedings of IEEE International Symposium on Parallel and Distributed Processing with Applications, (2011), 213-218. doi: 10.1109/ISPA.2011.57.  Google Scholar

[14]

Annales Des Telecommunications-Annals of Telecommunications, 67 (2012), 147-159. doi: 10.1007/s12243-012-0284-0.  Google Scholar

[15]

Proceedings of IEEE Vehicular Technology Conference (VTC Spring), (2012), 1-5. doi: 10.1109/VETECS.2012.6240136.  Google Scholar

[16]

IEICE Transactions on Communications, 97 (2014), 334-342. doi: 10.1587/transcom.E97.B.334.  Google Scholar

show all references

References:
[1]

Proceedings of IEEE International Conference on Communication Systems, (2010), 146-150. doi: 10.1109/ICCS.2010.5686367.  Google Scholar

[2]

Journal of Industrial and Management Optimization, 8 (2012), 841-860. doi: 10.3934/jimo.2012.8.841.  Google Scholar

[3]

IEEE Communications Magazine, 47 (2009), 48-55. doi: 10.1109/MCOM.2009.5116800.  Google Scholar

[4]

European Transactions on Telecommunications, 12 (2001), 357–358. doi: 10.1002/ett.4460120413.  Google Scholar

[5]

Proceedings of GLOBECOM Workshops, (2011), 1062-1066. doi: 10.1109/GLOCOMW.2011.6162340.  Google Scholar

[6]

Proceedings of IEEE International Conference on Communications, (2012), 1964-1969. doi: 10.1109/ICC.2012.6363708.  Google Scholar

[7]

Proceedings of IEEE Vehicular Technology Conference (VTC Fall), (2011), 1-5. doi: 10.1109/VETECF.2011.6092961.  Google Scholar

[8]

Proceedings of IEEE Vehicular Technology Conference (VTC Fall), (2012), 1-5. doi: 10.1109/VTCFall.2012.6399035.  Google Scholar

[9]

Journal of Industrial and Management Optimization, 10 (2014), 151-166. doi: 10.3934/jimo.2014.10.151.  Google Scholar

[10]

Proceedings of IEEE Vehicular Technology Conference (VTC Spring), (2012), 1-5. doi: 10.1109/VETECS.2012.6240102.  Google Scholar

[11]

Proceedings of Wireless Communications and Networking Conference, (2013), 568-573. doi: 10.1109/WCNC.2013.6554626.  Google Scholar

[12]

IEEE Transactions on Wireless Communications, 12 (2013), 89-99. doi: 10.1109/TWC.2012.113012.111776.  Google Scholar

[13]

Proceedings of IEEE International Symposium on Parallel and Distributed Processing with Applications, (2011), 213-218. doi: 10.1109/ISPA.2011.57.  Google Scholar

[14]

Annales Des Telecommunications-Annals of Telecommunications, 67 (2012), 147-159. doi: 10.1007/s12243-012-0284-0.  Google Scholar

[15]

Proceedings of IEEE Vehicular Technology Conference (VTC Spring), (2012), 1-5. doi: 10.1109/VETECS.2012.6240136.  Google Scholar

[16]

IEICE Transactions on Communications, 97 (2014), 334-342. doi: 10.1587/transcom.E97.B.334.  Google Scholar

[1]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[2]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[3]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[4]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[5]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[6]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[7]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[8]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[9]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[10]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[11]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[12]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[13]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[14]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[15]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[16]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[17]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[18]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[19]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[20]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]