July  2015, 11(3): 887-920. doi: 10.3934/jimo.2015.11.887

Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures

1. 

Mobile Innovation Centre, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

2. 

MTA-BME Information systems research group and Department of Networked Systems and Services, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

Received  November 2013 Revised  August 2014 Published  October 2014

One of the key issues in recent mobile telecommunication is to increase the scalability of current packet data networks. This comes along with the requirement of reducing the load of signaling related to establishment and handover procedures. This paper establishes an analytical model to analyze the signaling overhead of two different secure mobile architectures. Both are based on the Host Identity Protocol for secure signaling and use IPsec for secure data transport. The paper presents the cumulative distribution function and moments of security association periods and calculates the rate of different signaling procedures in a synthetic network model assuming M/G/$\infty$ process for session establishments between end-nodes. Using the model, it is shown that the Ultra Flat Architecture has significant performance gains over the traditional End-to-End HIP protocol in large-scale mobile environment in the access networks and toward the rendezvous service, but performs worse in the core transport network between the GWs.
Citation: Zoltán Faigl, Miklós Telek. Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures. Journal of Industrial & Management Optimization, 2015, 11 (3) : 887-920. doi: 10.3934/jimo.2015.11.887
References:
[1]

, Cisco visual networking index: Global mobile data traffic forecast update, 2013-2018,, White Paper, (2014), 11.   Google Scholar

[2]

L. Bokor, Z. Faigl and S. Imre, Survey and evaluation of advanced mobility management schemes in the host identity layer, International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34-59. doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

L. Bokor, Z. Faigl and S. Imre, A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture, Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), Karlstad, Sweden, (2010), 1-8. doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

D. J. Daley, The Busy Period of the M/GI/$\infty$ Queue, Queueing Syst. Theory Appl., 38 (2001), 195-204. doi: 10.1023/A:1010958415137.  Google Scholar

[5]

K. Daoud, P. Herbelin and N. Crespi, UFA: Ultra Flat Architecture for high bitrate services in mobile networks, Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), Cannes, France, (2008), 1-6. doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Z. Faigl, Performance Analysis of Signalling Overhead in Host Identity Protocol-based Secure Mobile Networks: Ultra Flat Architecture or End-to-End Signalling?, Wireless Networks, 10.1007/s11276-014-0797-8 (2014), 1-25. doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Z. Faigl, L. Bokor, P. Neves, K. Daoud and P. Herbelin, Evaluation of Two Integrated Signalling Schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP Protocols, Computer Networks, 55 (2011), 1560-1575. doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

A. Gurtov, M. Komu and R. Moskowitz., Host Identity Protocol (HIP): Identifier/Locator Split for Host Mobility and Multihoming, Internet Protocol Journal, 12 (2009), 27-32. Google Scholar

[9]

T. Heer and S. Varjonen, Host Identity Protocol Certificates, RFC 6253, IETF, May 2011. Available from: http://tools.ietf.org/rfc/rfc6253.txt. Google Scholar

[10]

P. Jokela, R. Moskowitz and P. Nikander, Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP), RFC 5202, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5202.txt. Google Scholar

[11]

T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE), RFC 3526, IETF, May 2003. Available from: http://tools.ietf.org/rfc/rfc3526.txt. Google Scholar

[12]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, 2nd edition, Chapman & Hall, Ltd., London, UK, 2009.  Google Scholar

[13]

J. Laganier, T. Koponen and L. Eggert, Host Identity Protocol (HIP) Registration Extension, RFC 5203, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5203.txt. Google Scholar

[14]

R. Moskowitz et al, Host Identity Protocol, RFC 5201, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5201.txt. Google Scholar

[15]

P. Nikander and J. Arkko, Delegation of Signalling Rights, in Security Protocols, Lecture Notes in Computer Science (eds. Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe), 2845 (2004), 203-214. doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host Mobility and Multihoming with the Host Identity Protocol, RFC 5206, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5206.txt. Google Scholar

[17]

E. Rescorla, Diffie-Hellman Key Agreement Method, RFC 2631, IETF, June 1999. Available from: http://tools.ietf.org/rfc/rfc2631.txt. Google Scholar

show all references

References:
[1]

, Cisco visual networking index: Global mobile data traffic forecast update, 2013-2018,, White Paper, (2014), 11.   Google Scholar

[2]

L. Bokor, Z. Faigl and S. Imre, Survey and evaluation of advanced mobility management schemes in the host identity layer, International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34-59. doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

L. Bokor, Z. Faigl and S. Imre, A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture, Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), Karlstad, Sweden, (2010), 1-8. doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

D. J. Daley, The Busy Period of the M/GI/$\infty$ Queue, Queueing Syst. Theory Appl., 38 (2001), 195-204. doi: 10.1023/A:1010958415137.  Google Scholar

[5]

K. Daoud, P. Herbelin and N. Crespi, UFA: Ultra Flat Architecture for high bitrate services in mobile networks, Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), Cannes, France, (2008), 1-6. doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Z. Faigl, Performance Analysis of Signalling Overhead in Host Identity Protocol-based Secure Mobile Networks: Ultra Flat Architecture or End-to-End Signalling?, Wireless Networks, 10.1007/s11276-014-0797-8 (2014), 1-25. doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Z. Faigl, L. Bokor, P. Neves, K. Daoud and P. Herbelin, Evaluation of Two Integrated Signalling Schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP Protocols, Computer Networks, 55 (2011), 1560-1575. doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

A. Gurtov, M. Komu and R. Moskowitz., Host Identity Protocol (HIP): Identifier/Locator Split for Host Mobility and Multihoming, Internet Protocol Journal, 12 (2009), 27-32. Google Scholar

[9]

T. Heer and S. Varjonen, Host Identity Protocol Certificates, RFC 6253, IETF, May 2011. Available from: http://tools.ietf.org/rfc/rfc6253.txt. Google Scholar

[10]

P. Jokela, R. Moskowitz and P. Nikander, Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP), RFC 5202, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5202.txt. Google Scholar

[11]

T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE), RFC 3526, IETF, May 2003. Available from: http://tools.ietf.org/rfc/rfc3526.txt. Google Scholar

[12]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, 2nd edition, Chapman & Hall, Ltd., London, UK, 2009.  Google Scholar

[13]

J. Laganier, T. Koponen and L. Eggert, Host Identity Protocol (HIP) Registration Extension, RFC 5203, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5203.txt. Google Scholar

[14]

R. Moskowitz et al, Host Identity Protocol, RFC 5201, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5201.txt. Google Scholar

[15]

P. Nikander and J. Arkko, Delegation of Signalling Rights, in Security Protocols, Lecture Notes in Computer Science (eds. Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe), 2845 (2004), 203-214. doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host Mobility and Multihoming with the Host Identity Protocol, RFC 5206, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5206.txt. Google Scholar

[17]

E. Rescorla, Diffie-Hellman Key Agreement Method, RFC 2631, IETF, June 1999. Available from: http://tools.ietf.org/rfc/rfc2631.txt. Google Scholar

[1]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[2]

Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2891-2912. doi: 10.3934/jimo.2019085

[3]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[4]

Ke Sun, Jinting Wang, Zhe George Zhang. Strategic joining in a single-server retrial queue with batch service. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3309-3332. doi: 10.3934/jimo.2020120

[5]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[6]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[7]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[8]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[9]

Naoto Miyoshi. On the stationary LCFS-PR single-server queue: A characterization via stochastic intensity. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 713-725. doi: 10.3934/naco.2011.1.713

[10]

Ali Delavarkhalafi. On optimal stochastic jumps in multi server queue with impatient customers via stochastic control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021030

[11]

Lixin Xu, Wanquan Liu. A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service. Journal of Industrial & Management Optimization, 2005, 1 (3) : 389-404. doi: 10.3934/jimo.2005.1.389

[12]

Veena Goswami, M. L. Chaudhry. Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021168

[13]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[14]

Wenxue Huang, Yuanyi Pan, Lihong Zheng. Proportional association based roi model. Big Data & Information Analytics, 2017, 2 (2) : 119-125. doi: 10.3934/bdia.2017004

[15]

Nickolas J. Michelacakis. Strategic delegation effects on Cournot and Stackelberg competition. Journal of Dynamics & Games, 2018, 5 (3) : 231-242. doi: 10.3934/jdg.2018015

[16]

Sumit Kumar Debnath, Tanmay Choudhury, Pantelimon Stănică, Kunal Dey, Nibedita Kundu. Delegating signing rights in a multivariate proxy signature scheme. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021016

[17]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[18]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[19]

Peter W. Bates, Yu Liang, Alexander W. Shingleton. Growth regulation and the insulin signaling pathway. Networks & Heterogeneous Media, 2013, 8 (1) : 65-78. doi: 10.3934/nhm.2013.8.65

[20]

Yu Chen. Delegation principle for multi-agency games under ex post equilibrium. Journal of Dynamics & Games, 2018, 5 (4) : 311-329. doi: 10.3934/jdg.2018019

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]