July  2015, 11(3): 887-920. doi: 10.3934/jimo.2015.11.887

Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures

1. 

Mobile Innovation Centre, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

2. 

MTA-BME Information systems research group and Department of Networked Systems and Services, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

Received  November 2013 Revised  August 2014 Published  October 2014

One of the key issues in recent mobile telecommunication is to increase the scalability of current packet data networks. This comes along with the requirement of reducing the load of signaling related to establishment and handover procedures. This paper establishes an analytical model to analyze the signaling overhead of two different secure mobile architectures. Both are based on the Host Identity Protocol for secure signaling and use IPsec for secure data transport. The paper presents the cumulative distribution function and moments of security association periods and calculates the rate of different signaling procedures in a synthetic network model assuming M/G/$\infty$ process for session establishments between end-nodes. Using the model, it is shown that the Ultra Flat Architecture has significant performance gains over the traditional End-to-End HIP protocol in large-scale mobile environment in the access networks and toward the rendezvous service, but performs worse in the core transport network between the GWs.
Citation: Zoltán Faigl, Miklós Telek. Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures. Journal of Industrial & Management Optimization, 2015, 11 (3) : 887-920. doi: 10.3934/jimo.2015.11.887
References:
[1]

White Paper, Cisco, Feb 5, 2014. Available from: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf Google Scholar

[2]

International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34-59. doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), Karlstad, Sweden, (2010), 1-8. doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

Queueing Syst. Theory Appl., 38 (2001), 195-204. doi: 10.1023/A:1010958415137.  Google Scholar

[5]

Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), Cannes, France, (2008), 1-6. doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Wireless Networks, 10.1007/s11276-014-0797-8 (2014), 1-25. doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Computer Networks, 55 (2011), 1560-1575. doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

Internet Protocol Journal, 12 (2009), 27-32. Google Scholar

[9]

RFC 6253, IETF, May 2011. Available from: http://tools.ietf.org/rfc/rfc6253.txt. Google Scholar

[10]

RFC 5202, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5202.txt. Google Scholar

[11]

RFC 3526, IETF, May 2003. Available from: http://tools.ietf.org/rfc/rfc3526.txt. Google Scholar

[12]

2nd edition, Chapman & Hall, Ltd., London, UK, 2009.  Google Scholar

[13]

RFC 5203, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5203.txt. Google Scholar

[14]

RFC 5201, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5201.txt. Google Scholar

[15]

in Security Protocols, Lecture Notes in Computer Science (eds. Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe), 2845 (2004), 203-214. doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

RFC 5206, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5206.txt. Google Scholar

[17]

RFC 2631, IETF, June 1999. Available from: http://tools.ietf.org/rfc/rfc2631.txt. Google Scholar

show all references

References:
[1]

White Paper, Cisco, Feb 5, 2014. Available from: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf Google Scholar

[2]

International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34-59. doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), Karlstad, Sweden, (2010), 1-8. doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

Queueing Syst. Theory Appl., 38 (2001), 195-204. doi: 10.1023/A:1010958415137.  Google Scholar

[5]

Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), Cannes, France, (2008), 1-6. doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Wireless Networks, 10.1007/s11276-014-0797-8 (2014), 1-25. doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Computer Networks, 55 (2011), 1560-1575. doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

Internet Protocol Journal, 12 (2009), 27-32. Google Scholar

[9]

RFC 6253, IETF, May 2011. Available from: http://tools.ietf.org/rfc/rfc6253.txt. Google Scholar

[10]

RFC 5202, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5202.txt. Google Scholar

[11]

RFC 3526, IETF, May 2003. Available from: http://tools.ietf.org/rfc/rfc3526.txt. Google Scholar

[12]

2nd edition, Chapman & Hall, Ltd., London, UK, 2009.  Google Scholar

[13]

RFC 5203, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5203.txt. Google Scholar

[14]

RFC 5201, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5201.txt. Google Scholar

[15]

in Security Protocols, Lecture Notes in Computer Science (eds. Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe), 2845 (2004), 203-214. doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

RFC 5206, IETF, April 2008. Available from: http://tools.ietf.org/rfc/rfc5206.txt. Google Scholar

[17]

RFC 2631, IETF, June 1999. Available from: http://tools.ietf.org/rfc/rfc2631.txt. Google Scholar

[1]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[2]

Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells. Ironwood meta key agreement and authentication protocol. Advances in Mathematics of Communications, 2021, 15 (3) : 397-413. doi: 10.3934/amc.2020073

[3]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[4]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[5]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[6]

Palash Sarkar, Subhadip Singha. Classical reduction of gap SVP to LWE: A concrete security analysis. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021004

[7]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[8]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[9]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[10]

Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259

[11]

Qi Deng, Zhipeng Qiu, Ting Guo, Libin Rong. Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3543-3562. doi: 10.3934/dcdsb.2020245

[12]

Chiara Spadafora, Riccardo Longo, Massimiliano Sala. A coercion-resistant blockchain-based E-voting protocol with receipts. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021005

[13]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[14]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[15]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[16]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[17]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[18]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[19]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[20]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]