July  2015, 11(3): 887-920. doi: 10.3934/jimo.2015.11.887

Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures

1. 

Mobile Innovation Centre, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

2. 

MTA-BME Information systems research group and Department of Networked Systems and Services, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

Received  November 2013 Revised  August 2014 Published  October 2014

One of the key issues in recent mobile telecommunication is to increase the scalability of current packet data networks. This comes along with the requirement of reducing the load of signaling related to establishment and handover procedures. This paper establishes an analytical model to analyze the signaling overhead of two different secure mobile architectures. Both are based on the Host Identity Protocol for secure signaling and use IPsec for secure data transport. The paper presents the cumulative distribution function and moments of security association periods and calculates the rate of different signaling procedures in a synthetic network model assuming M/G/$\infty$ process for session establishments between end-nodes. Using the model, it is shown that the Ultra Flat Architecture has significant performance gains over the traditional End-to-End HIP protocol in large-scale mobile environment in the access networks and toward the rendezvous service, but performs worse in the core transport network between the GWs.
Citation: Zoltán Faigl, Miklós Telek. Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures. Journal of Industrial & Management Optimization, 2015, 11 (3) : 887-920. doi: 10.3934/jimo.2015.11.887
References:
[1]

, Cisco visual networking index: Global mobile data traffic forecast update, 2013-2018,, White Paper, (2014), 11.   Google Scholar

[2]

L. Bokor, Z. Faigl and S. Imre, Survey and evaluation of advanced mobility management schemes in the host identity layer,, International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34.  doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

L. Bokor, Z. Faigl and S. Imre, A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture,, Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), (2010), 1.  doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

D. J. Daley, The Busy Period of the M/GI/$\infty$ Queue,, Queueing Syst. Theory Appl., 38 (2001), 195.  doi: 10.1023/A:1010958415137.  Google Scholar

[5]

K. Daoud, P. Herbelin and N. Crespi, UFA: Ultra Flat Architecture for high bitrate services in mobile networks,, Proceedings of the IEEE 19th International Symposium on Personal, (2008), 1.  doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Z. Faigl, Performance Analysis of Signalling Overhead in Host Identity Protocol-based Secure Mobile Networks: Ultra Flat Architecture or End-to-End Signalling?,, Wireless Networks, (2014), 11276.  doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Z. Faigl, L. Bokor, P. Neves, K. Daoud and P. Herbelin, Evaluation of Two Integrated Signalling Schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP Protocols,, Computer Networks, 55 (2011), 1560.  doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

A. Gurtov, M. Komu and R. Moskowitz., Host Identity Protocol (HIP): Identifier/Locator Split for Host Mobility and Multihoming,, Internet Protocol Journal, 12 (2009), 27.   Google Scholar

[9]

T. Heer and S. Varjonen, Host Identity Protocol Certificates,, RFC 6253, (6253).   Google Scholar

[10]

P. Jokela, R. Moskowitz and P. Nikander, Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP),, RFC 5202, (5202).   Google Scholar

[11]

T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE),, RFC 3526, (3526).   Google Scholar

[12]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems,, 2nd edition, (2009).   Google Scholar

[13]

J. Laganier, T. Koponen and L. Eggert, Host Identity Protocol (HIP) Registration Extension,, RFC 5203, (5203).   Google Scholar

[14]

R. Moskowitz et al, Host Identity Protocol,, RFC 5201, (5201).   Google Scholar

[15]

P. Nikander and J. Arkko, Delegation of Signalling Rights,, in Security Protocols, 2845 (2004), 203.  doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host Mobility and Multihoming with the Host Identity Protocol,, RFC 5206, (5206).   Google Scholar

[17]

E. Rescorla, Diffie-Hellman Key Agreement Method,, RFC 2631, (2631).   Google Scholar

show all references

References:
[1]

, Cisco visual networking index: Global mobile data traffic forecast update, 2013-2018,, White Paper, (2014), 11.   Google Scholar

[2]

L. Bokor, Z. Faigl and S. Imre, Survey and evaluation of advanced mobility management schemes in the host identity layer,, International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34.  doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

L. Bokor, Z. Faigl and S. Imre, A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture,, Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), (2010), 1.  doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

D. J. Daley, The Busy Period of the M/GI/$\infty$ Queue,, Queueing Syst. Theory Appl., 38 (2001), 195.  doi: 10.1023/A:1010958415137.  Google Scholar

[5]

K. Daoud, P. Herbelin and N. Crespi, UFA: Ultra Flat Architecture for high bitrate services in mobile networks,, Proceedings of the IEEE 19th International Symposium on Personal, (2008), 1.  doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Z. Faigl, Performance Analysis of Signalling Overhead in Host Identity Protocol-based Secure Mobile Networks: Ultra Flat Architecture or End-to-End Signalling?,, Wireless Networks, (2014), 11276.  doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Z. Faigl, L. Bokor, P. Neves, K. Daoud and P. Herbelin, Evaluation of Two Integrated Signalling Schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP Protocols,, Computer Networks, 55 (2011), 1560.  doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

A. Gurtov, M. Komu and R. Moskowitz., Host Identity Protocol (HIP): Identifier/Locator Split for Host Mobility and Multihoming,, Internet Protocol Journal, 12 (2009), 27.   Google Scholar

[9]

T. Heer and S. Varjonen, Host Identity Protocol Certificates,, RFC 6253, (6253).   Google Scholar

[10]

P. Jokela, R. Moskowitz and P. Nikander, Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP),, RFC 5202, (5202).   Google Scholar

[11]

T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE),, RFC 3526, (3526).   Google Scholar

[12]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems,, 2nd edition, (2009).   Google Scholar

[13]

J. Laganier, T. Koponen and L. Eggert, Host Identity Protocol (HIP) Registration Extension,, RFC 5203, (5203).   Google Scholar

[14]

R. Moskowitz et al, Host Identity Protocol,, RFC 5201, (5201).   Google Scholar

[15]

P. Nikander and J. Arkko, Delegation of Signalling Rights,, in Security Protocols, 2845 (2004), 203.  doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host Mobility and Multihoming with the Host Identity Protocol,, RFC 5206, (5206).   Google Scholar

[17]

E. Rescorla, Diffie-Hellman Key Agreement Method,, RFC 2631, (2631).   Google Scholar

[1]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[2]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[3]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[4]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[5]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[6]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[7]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[10]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[11]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[12]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[13]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[14]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[15]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[16]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[19]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]