• Previous Article
    Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
  • JIMO Home
  • This Issue
  • Next Article
    Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures
July  2015, 11(3): 921-932. doi: 10.3934/jimo.2015.11.921

Clustering based polyhedral conic functions algorithm in classification

1. 

Department of Industrial Engineering, Faculty of Engineering, Anadolu University, Eskisehir, 26555, Turkey

2. 

Vitra, Eczacibasi Yapi Gerecleri, 11300 Bilecik, Turkey

Received  October 2013 Revised  June 2014 Published  October 2014

In this study, a new algorithm based on polyhedral conic functions (PCFs) is developed to solve multi-class supervised data classification problems. The $k$ PCFs are constructed for each class in order to separate it from the rest of the data set. The $k$-means algorithm is applied to find vertices of PCFs and then a linear programming model is solved to calculate the parameters of each PCF. The separating functions for each class are obtained as a pointwise minimum of the PCFs. A class label is assigned to the test point according to its minimum value over all separating functions. In order to demonstrate the performance of the proposed algorithm, it is applied to solve classification problems in publicly available data sets. The comparative results with some mainstream classifiers are presented.
Citation: Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921
References:
[1]

A. Astorino and M. Gaudioso, Polyhedral separability through successive LP,, Journal of Optimization Theory and Applications, 112 (2002), 265.  doi: 10.1023/A:1013649822153.  Google Scholar

[2]

A. Astorino, M. Gaudioso and A. Seeger, Conic separation of finite sets. i: The homogeneous case,, Journal of Convex Analysis, 21 (2014), 001.   Google Scholar

[3]

K. Bache and M. Lichman, UCI machine learning repository, 2013., URL , ().   Google Scholar

[4]

A. M. Bagirov, Max-min separability,, Optimization Methods and Software, 20 (2005), 277.  doi: 10.1080/10556780512331318263.  Google Scholar

[5]

A. M. Bagirov and J. Ugon, Supervised data classification via max-min separability,, Applied Optimization, 99 (2005), 175.  doi: 10.1007/0-387-26771-9_6.  Google Scholar

[6]

A. M. Bagirov, M. Ghosh and D. Webb, A derivative-free method for linearly constrained nonsmooth optimization,, Journal of Industrial and Management Optimization, 2 (2006), 319.   Google Scholar

[7]

A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and R. Kasimbeyli, A novel piecewise linear classifier based on polyhedral conic and max-min separabilities,, TOP, 21 (2013), 3.  doi: 10.1007/s11750-011-0241-5.  Google Scholar

[8]

C. J. C. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121.   Google Scholar

[9]

R. N. Gasimov and G. Ozturk, Separation via polihedral conic functions,, Optimization Methods and Software, 21 (2006), 527.  doi: 10.1080/10556780600723252.  Google Scholar

[10]

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The weka data mining software: An update,, SIGKDD Explorations, 11 (2009), 10.  doi: 10.1145/1656274.1656278.  Google Scholar

[11]

R. Kasimbeyli, Radial epiderivatives and set-valued optimization,, Optimization, 58 (2009), 521.  doi: 10.1080/02331930902928310.  Google Scholar

[12]

R. Kasimbeyli, A nonlinear cone separation theorem and scalarization in nonconvex vector optimization,, SIAM J. on Optimization, 20 (2009), 1591.  doi: 10.1137/070694089.  Google Scholar

[13]

R. Kasimbeyli and M. Mammadov, On weak subdifferentials, directional derivatives, and radial epiderivatives for nonconvex functions,, SIAM Journal on Optimization, 20 (2009), 841.  doi: 10.1137/080738106.  Google Scholar

[14]

G. Ozturk, A New Mathematical Programming Approach to Solve Classification Problems,, PhD thesis, 6 (2007).   Google Scholar

[15]

R. Rosenthal, GAMS: A User's Guide,, GAMS Development Corporation, (2013).   Google Scholar

[16]

K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.  doi: 10.3934/jimo.2005.1.465.  Google Scholar

show all references

References:
[1]

A. Astorino and M. Gaudioso, Polyhedral separability through successive LP,, Journal of Optimization Theory and Applications, 112 (2002), 265.  doi: 10.1023/A:1013649822153.  Google Scholar

[2]

A. Astorino, M. Gaudioso and A. Seeger, Conic separation of finite sets. i: The homogeneous case,, Journal of Convex Analysis, 21 (2014), 001.   Google Scholar

[3]

K. Bache and M. Lichman, UCI machine learning repository, 2013., URL , ().   Google Scholar

[4]

A. M. Bagirov, Max-min separability,, Optimization Methods and Software, 20 (2005), 277.  doi: 10.1080/10556780512331318263.  Google Scholar

[5]

A. M. Bagirov and J. Ugon, Supervised data classification via max-min separability,, Applied Optimization, 99 (2005), 175.  doi: 10.1007/0-387-26771-9_6.  Google Scholar

[6]

A. M. Bagirov, M. Ghosh and D. Webb, A derivative-free method for linearly constrained nonsmooth optimization,, Journal of Industrial and Management Optimization, 2 (2006), 319.   Google Scholar

[7]

A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and R. Kasimbeyli, A novel piecewise linear classifier based on polyhedral conic and max-min separabilities,, TOP, 21 (2013), 3.  doi: 10.1007/s11750-011-0241-5.  Google Scholar

[8]

C. J. C. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121.   Google Scholar

[9]

R. N. Gasimov and G. Ozturk, Separation via polihedral conic functions,, Optimization Methods and Software, 21 (2006), 527.  doi: 10.1080/10556780600723252.  Google Scholar

[10]

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The weka data mining software: An update,, SIGKDD Explorations, 11 (2009), 10.  doi: 10.1145/1656274.1656278.  Google Scholar

[11]

R. Kasimbeyli, Radial epiderivatives and set-valued optimization,, Optimization, 58 (2009), 521.  doi: 10.1080/02331930902928310.  Google Scholar

[12]

R. Kasimbeyli, A nonlinear cone separation theorem and scalarization in nonconvex vector optimization,, SIAM J. on Optimization, 20 (2009), 1591.  doi: 10.1137/070694089.  Google Scholar

[13]

R. Kasimbeyli and M. Mammadov, On weak subdifferentials, directional derivatives, and radial epiderivatives for nonconvex functions,, SIAM Journal on Optimization, 20 (2009), 841.  doi: 10.1137/080738106.  Google Scholar

[14]

G. Ozturk, A New Mathematical Programming Approach to Solve Classification Problems,, PhD thesis, 6 (2007).   Google Scholar

[15]

R. Rosenthal, GAMS: A User's Guide,, GAMS Development Corporation, (2013).   Google Scholar

[16]

K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.  doi: 10.3934/jimo.2005.1.465.  Google Scholar

[1]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[2]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[3]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[4]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[5]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[6]

Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019

[7]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[8]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[9]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[12]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[15]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[16]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[17]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]