-
Previous Article
Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
- JIMO Home
- This Issue
-
Next Article
Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures
Clustering based polyhedral conic functions algorithm in classification
1. | Department of Industrial Engineering, Faculty of Engineering, Anadolu University, Eskisehir, 26555, Turkey |
2. | Vitra, Eczacibasi Yapi Gerecleri, 11300 Bilecik, Turkey |
References:
[1] |
A. Astorino and M. Gaudioso, Polyhedral separability through successive LP,, Journal of Optimization Theory and Applications, 112 (2002), 265.
doi: 10.1023/A:1013649822153. |
[2] |
A. Astorino, M. Gaudioso and A. Seeger, Conic separation of finite sets. i: The homogeneous case,, Journal of Convex Analysis, 21 (2014), 001. Google Scholar |
[3] |
K. Bache and M. Lichman, UCI machine learning repository, 2013., URL , (). Google Scholar |
[4] |
A. M. Bagirov, Max-min separability,, Optimization Methods and Software, 20 (2005), 277.
doi: 10.1080/10556780512331318263. |
[5] |
A. M. Bagirov and J. Ugon, Supervised data classification via max-min separability,, Applied Optimization, 99 (2005), 175.
doi: 10.1007/0-387-26771-9_6. |
[6] |
A. M. Bagirov, M. Ghosh and D. Webb, A derivative-free method for linearly constrained nonsmooth optimization,, Journal of Industrial and Management Optimization, 2 (2006), 319. Google Scholar |
[7] |
A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and R. Kasimbeyli, A novel piecewise linear classifier based on polyhedral conic and max-min separabilities,, TOP, 21 (2013), 3.
doi: 10.1007/s11750-011-0241-5. |
[8] |
C. J. C. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121. Google Scholar |
[9] |
R. N. Gasimov and G. Ozturk, Separation via polihedral conic functions,, Optimization Methods and Software, 21 (2006), 527.
doi: 10.1080/10556780600723252. |
[10] |
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The weka data mining software: An update,, SIGKDD Explorations, 11 (2009), 10.
doi: 10.1145/1656274.1656278. |
[11] |
R. Kasimbeyli, Radial epiderivatives and set-valued optimization,, Optimization, 58 (2009), 521.
doi: 10.1080/02331930902928310. |
[12] |
R. Kasimbeyli, A nonlinear cone separation theorem and scalarization in nonconvex vector optimization,, SIAM J. on Optimization, 20 (2009), 1591.
doi: 10.1137/070694089. |
[13] |
R. Kasimbeyli and M. Mammadov, On weak subdifferentials, directional derivatives, and radial epiderivatives for nonconvex functions,, SIAM Journal on Optimization, 20 (2009), 841.
doi: 10.1137/080738106. |
[14] |
G. Ozturk, A New Mathematical Programming Approach to Solve Classification Problems,, PhD thesis, 6 (2007). Google Scholar |
[15] |
R. Rosenthal, GAMS: A User's Guide,, GAMS Development Corporation, (2013). Google Scholar |
[16] |
K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.
doi: 10.3934/jimo.2005.1.465. |
show all references
References:
[1] |
A. Astorino and M. Gaudioso, Polyhedral separability through successive LP,, Journal of Optimization Theory and Applications, 112 (2002), 265.
doi: 10.1023/A:1013649822153. |
[2] |
A. Astorino, M. Gaudioso and A. Seeger, Conic separation of finite sets. i: The homogeneous case,, Journal of Convex Analysis, 21 (2014), 001. Google Scholar |
[3] |
K. Bache and M. Lichman, UCI machine learning repository, 2013., URL , (). Google Scholar |
[4] |
A. M. Bagirov, Max-min separability,, Optimization Methods and Software, 20 (2005), 277.
doi: 10.1080/10556780512331318263. |
[5] |
A. M. Bagirov and J. Ugon, Supervised data classification via max-min separability,, Applied Optimization, 99 (2005), 175.
doi: 10.1007/0-387-26771-9_6. |
[6] |
A. M. Bagirov, M. Ghosh and D. Webb, A derivative-free method for linearly constrained nonsmooth optimization,, Journal of Industrial and Management Optimization, 2 (2006), 319. Google Scholar |
[7] |
A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and R. Kasimbeyli, A novel piecewise linear classifier based on polyhedral conic and max-min separabilities,, TOP, 21 (2013), 3.
doi: 10.1007/s11750-011-0241-5. |
[8] |
C. J. C. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121. Google Scholar |
[9] |
R. N. Gasimov and G. Ozturk, Separation via polihedral conic functions,, Optimization Methods and Software, 21 (2006), 527.
doi: 10.1080/10556780600723252. |
[10] |
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The weka data mining software: An update,, SIGKDD Explorations, 11 (2009), 10.
doi: 10.1145/1656274.1656278. |
[11] |
R. Kasimbeyli, Radial epiderivatives and set-valued optimization,, Optimization, 58 (2009), 521.
doi: 10.1080/02331930902928310. |
[12] |
R. Kasimbeyli, A nonlinear cone separation theorem and scalarization in nonconvex vector optimization,, SIAM J. on Optimization, 20 (2009), 1591.
doi: 10.1137/070694089. |
[13] |
R. Kasimbeyli and M. Mammadov, On weak subdifferentials, directional derivatives, and radial epiderivatives for nonconvex functions,, SIAM Journal on Optimization, 20 (2009), 841.
doi: 10.1137/080738106. |
[14] |
G. Ozturk, A New Mathematical Programming Approach to Solve Classification Problems,, PhD thesis, 6 (2007). Google Scholar |
[15] |
R. Rosenthal, GAMS: A User's Guide,, GAMS Development Corporation, (2013). Google Scholar |
[16] |
K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.
doi: 10.3934/jimo.2005.1.465. |
[1] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[2] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[3] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[4] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[5] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[6] |
Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019 |
[7] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[8] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[9] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[10] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[11] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[12] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[13] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[14] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[15] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[16] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[17] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[18] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[19] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[20] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]