• Previous Article
    Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
  • JIMO Home
  • This Issue
  • Next Article
    Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures
July  2015, 11(3): 921-932. doi: 10.3934/jimo.2015.11.921

Clustering based polyhedral conic functions algorithm in classification

1. 

Department of Industrial Engineering, Faculty of Engineering, Anadolu University, Eskisehir, 26555, Turkey

2. 

Vitra, Eczacibasi Yapi Gerecleri, 11300 Bilecik, Turkey

Received  October 2013 Revised  June 2014 Published  October 2014

In this study, a new algorithm based on polyhedral conic functions (PCFs) is developed to solve multi-class supervised data classification problems. The $k$ PCFs are constructed for each class in order to separate it from the rest of the data set. The $k$-means algorithm is applied to find vertices of PCFs and then a linear programming model is solved to calculate the parameters of each PCF. The separating functions for each class are obtained as a pointwise minimum of the PCFs. A class label is assigned to the test point according to its minimum value over all separating functions. In order to demonstrate the performance of the proposed algorithm, it is applied to solve classification problems in publicly available data sets. The comparative results with some mainstream classifiers are presented.
Citation: Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921
References:
[1]

Journal of Optimization Theory and Applications, 112 (2002), 265-293. doi: 10.1023/A:1013649822153.  Google Scholar

[2]

Journal of Convex Analysis, 21 (2014), 001-028. Google Scholar

[3]

K. Bache and M. Lichman, UCI machine learning repository, 2013., URL , ().   Google Scholar

[4]

Optimization Methods and Software, 20 (2005), 277-296. doi: 10.1080/10556780512331318263.  Google Scholar

[5]

Applied Optimization, 99 (2005), 175-207. doi: 10.1007/0-387-26771-9_6.  Google Scholar

[6]

Journal of Industrial and Management Optimization, 2 (2006), 319-338. Google Scholar

[7]

TOP, 21 (2013), 3-24. ISSN 1134-5764. doi: 10.1007/s11750-011-0241-5.  Google Scholar

[8]

Data Mining and Knowledge Discovery, 2 (1998), 121-167. Google Scholar

[9]

Optimization Methods and Software, 21 (2006), 527-540. doi: 10.1080/10556780600723252.  Google Scholar

[10]

SIGKDD Explorations, 11 (2009), 10-18. ISSN 1931-0145. doi: 10.1145/1656274.1656278.  Google Scholar

[11]

Optimization, 58 (2009), 521-534. doi: 10.1080/02331930902928310.  Google Scholar

[12]

SIAM J. on Optimization, 20 (2009), 1591-1619. ISSN 1052-6234. doi: 10.1137/070694089.  Google Scholar

[13]

SIAM Journal on Optimization, 20 (2009), 841-855. doi: 10.1137/080738106.  Google Scholar

[14]

PhD thesis, Eskisehir Osmangazi University, Institute of Scince, 6 2007. (in Turkish). Google Scholar

[15]

GAMS Development Corporation, Washington, DC, 2013. URL http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf. Google Scholar

[16]

Journal of Industrial and Management Optimization, 1 (2005), 465-476. doi: 10.3934/jimo.2005.1.465.  Google Scholar

show all references

References:
[1]

Journal of Optimization Theory and Applications, 112 (2002), 265-293. doi: 10.1023/A:1013649822153.  Google Scholar

[2]

Journal of Convex Analysis, 21 (2014), 001-028. Google Scholar

[3]

K. Bache and M. Lichman, UCI machine learning repository, 2013., URL , ().   Google Scholar

[4]

Optimization Methods and Software, 20 (2005), 277-296. doi: 10.1080/10556780512331318263.  Google Scholar

[5]

Applied Optimization, 99 (2005), 175-207. doi: 10.1007/0-387-26771-9_6.  Google Scholar

[6]

Journal of Industrial and Management Optimization, 2 (2006), 319-338. Google Scholar

[7]

TOP, 21 (2013), 3-24. ISSN 1134-5764. doi: 10.1007/s11750-011-0241-5.  Google Scholar

[8]

Data Mining and Knowledge Discovery, 2 (1998), 121-167. Google Scholar

[9]

Optimization Methods and Software, 21 (2006), 527-540. doi: 10.1080/10556780600723252.  Google Scholar

[10]

SIGKDD Explorations, 11 (2009), 10-18. ISSN 1931-0145. doi: 10.1145/1656274.1656278.  Google Scholar

[11]

Optimization, 58 (2009), 521-534. doi: 10.1080/02331930902928310.  Google Scholar

[12]

SIAM J. on Optimization, 20 (2009), 1591-1619. ISSN 1052-6234. doi: 10.1137/070694089.  Google Scholar

[13]

SIAM Journal on Optimization, 20 (2009), 841-855. doi: 10.1137/080738106.  Google Scholar

[14]

PhD thesis, Eskisehir Osmangazi University, Institute of Scince, 6 2007. (in Turkish). Google Scholar

[15]

GAMS Development Corporation, Washington, DC, 2013. URL http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf. Google Scholar

[16]

Journal of Industrial and Management Optimization, 1 (2005), 465-476. doi: 10.3934/jimo.2005.1.465.  Google Scholar

[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[4]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[5]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[6]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[7]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[8]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[9]

Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021008

[10]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[11]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[12]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[13]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[14]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[15]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[16]

Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021081

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[18]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[19]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[20]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]