July  2015, 11(3): 933-949. doi: 10.3934/jimo.2015.11.933

Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns

1. 

Department of Industrial Engineering, Karazmi University, Mofatteh Avenue, Tehran, Iran, Iran

2. 

Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

3. 

Department of Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran

Received  August 2013 Revised  July 2014 Published  October 2014

This paper develops an Economic Order Quantity (EOQ) model for non-instantaneous deteriorating items with selling price- and inflation-induced demand under the effect of inflation and customer returns. The customer returns are assumed as a function of demand and price. Shortages are allowed and partially backlogged. The effects of time value of money are studied using the Discounted Cash Flow approach. The main objective is to determine the optimal selling price, the optimal length of time in which there is no inventory shortage, and the optimal replenishment cycle simultaneously such that the present value of total profit is maximized. An efficient algorithm is presented to find the optimal solution of the developed model. Finally, a numerical example is extracted to solve the presented inventory model using the proposed algorithm and the effects of the customer returns, inflation, and non-instantaneous deterioration are also discussed. The paper ends with a conclusion and outlook to future studies.
Citation: Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933
References:
[1]

P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering,, Managem. Sci., 42 (1996), 1093.  doi: 10.1287/mnsc.42.8.1093.  Google Scholar

[2]

P. L. Abad, Optimal price and order size for a reseller under partial backordering,, Comp. and Oper. Res., 28 (2001), 53.  doi: 10.1016/S0305-0548(99)00086-6.  Google Scholar

[3]

E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence,, Working paper, (2006).   Google Scholar

[4]

A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging,, Applied Mathematics and Computation, 232 (2014), 1125.  doi: 10.1016/j.amc.2014.01.115.  Google Scholar

[5]

J. A. Buzacott, Economic order quantity with inflation,, Operational Quarterly, 26 (1975), 553.  doi: 10.2307/3008214.  Google Scholar

[6]

C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat,, J. of Prod. Econ, 123 (2010), 62.   Google Scholar

[7]

H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,, Eur. J. Oper. Res., 168 (2005), 51.  doi: 10.1016/j.ejor.2004.05.003.  Google Scholar

[8]

J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions,, Eur. J. Oper. Res., 195 (2009), 280.  doi: 10.1016/j.ejor.2008.01.030.  Google Scholar

[9]

R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration,, AIIE Trans., 5 (1973), 323.  doi: 10.1080/05695557308974918.  Google Scholar

[10]

T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages,, Eur. J. Oper. Res., 52 (1991), 326.  doi: 10.1016/0377-2217(91)90167-T.  Google Scholar

[11]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,, Omega, 35 (2007), 184.  doi: 10.1016/j.omega.2005.05.002.  Google Scholar

[12]

C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach,, Comput. and Industrial Engineering, 52 (2007), 29.  doi: 10.1016/j.cie.2006.10.009.  Google Scholar

[13]

K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments,, J. of Comp. and Appl. Math., 223 (2010), 2492.  doi: 10.1016/j.cam.2009.10.031.  Google Scholar

[14]

P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,, Internat. J. of Prod. Res., 21 (1963), 449.   Google Scholar

[15]

A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios,, Proceedings of the Institution of Mechanical Engineers, 227 (2013), 1057.  doi: 10.1177/0954405413481452.  Google Scholar

[16]

M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns,, Journal of Industrial Engineering, 2013 (2013).  doi: 10.1155/2013/709083.  Google Scholar

[17]

M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns,, Optimization, 63 (2014), 1785.  doi: 10.1080/02331934.2013.853059.  Google Scholar

[18]

M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation,, to appear in Proceedings of the Institution of Mechanical Engineers, (2014).  doi: 10.1177/0954405414522215.  Google Scholar

[19]

B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon,, European Journal of Operational Research, 234 (2014), 683.  doi: 10.1016/j.ejor.2013.11.001.  Google Scholar

[20]

S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits,, Internat. J. of Systems Sci., 22 (1991), 197.  doi: 10.1080/00207729108910600.  Google Scholar

[21]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory,, Eur. J. Oper. Res., 134 (2001), 1.  doi: 10.1016/S0377-2217(00)00248-4.  Google Scholar

[22]

A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment,, Applied Mathematical Modeling, 37 (2013), 240.  doi: 10.1016/j.apm.2012.02.010.  Google Scholar

[23]

R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs,, IIE Trans., 24 (1992), 104.  doi: 10.1080/07408179208964207.  Google Scholar

[24]

M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand,, J. Oper. Res. Soc., 47 (1996), 1228.  doi: 10.2307/3010036.  Google Scholar

[25]

M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions,, Eur. J. Oper. Res., 89 (1996), 313.  doi: 10.1016/0377-2217(94)00256-8.  Google Scholar

[26]

K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate,, Comp. Ind. Eng., 20 (1991), 187.   Google Scholar

[27]

J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing,, J. of Direct Marketing, 11 (1997), 20.  doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0.  Google Scholar

[28]

I. Horowitz, EOQ and inflation uncertainty,, International Journal of Prod. Econ., 65 (2000), 217.  doi: 10.1016/S0925-5273(99)00034-1.  Google Scholar

[29]

K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation,, OPSEARCH, 50 (2013), 404.  doi: 10.1007/s12597-012-0115-0.  Google Scholar

[30]

T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,, Expert Syst. with Appl., 37 (2010), 7234.  doi: 10.1016/j.eswa.2010.04.004.  Google Scholar

[31]

C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand,, Int. J. Prod. Econ., 103 (2006), 707.  doi: 10.1016/j.ijpe.2006.01.004.  Google Scholar

[32]

R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand,, Int. J. Prod. Econ., 136 (2012), 116.  doi: 10.1016/j.ijpe.2011.09.020.  Google Scholar

[33]

R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging,, Math. and Comp. Modelling, 55 (2012), 1722.  doi: 10.1016/j.mcm.2011.11.017.  Google Scholar

[34]

A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,, Internat. J. of Systems Sci., 40 (2009), 21.  doi: 10.1080/00207720802088264.  Google Scholar

[35]

R. B. Misra, A note on optimal inventory management under inflation,, Naval Res. Logist. Quart., 26 (1979), 161.  doi: 10.1002/nav.3800260116.  Google Scholar

[36]

I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle,, Eur. J. Oper. Res., 125 (2000), 588.  doi: 10.1016/S0377-2217(99)00270-2.  Google Scholar

[37]

I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting,, Eur. J. Oper. Res., 162 (2005), 773.  doi: 10.1016/j.ejor.2003.09.025.  Google Scholar

[38]

A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments,, Internat. J. of Prod. Econ., 136 (2012), 75.  doi: 10.1016/j.ijpe.2011.09.013.  Google Scholar

[39]

L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments,, Comp. and Indust. Eng., 51 (2006), 637.  doi: 10.1016/j.cie.2006.07.012.  Google Scholar

[40]

L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase,, Journal of Industrial and Management Optimization, 9 (2013), 437.  doi: 10.3934/jimo.2013.9.437.  Google Scholar

[41]

K. S. Park, Inflationary effect on EOQ under trade-credit financing,, International Journal on Policy and Information, 10 (1986), 65.   Google Scholar

[42]

F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach,, Applied Mathematical Modelling, 37 (2013), 6683.  doi: 10.1016/j.apm.2012.12.020.  Google Scholar

[43]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Applied Mathematics and Computation, 217 (2011), 6159.  doi: 10.1016/j.amc.2010.12.098.  Google Scholar

[44]

B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model,, Expert Systems with Applications, 38 (2011), 13543.  doi: 10.1016/j.eswa.2011.04.044.  Google Scholar

[45]

B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration,, Int. J. Prod. Eco., 48 (1997), 227.  doi: 10.1016/S0925-5273(96)00107-7.  Google Scholar

[46]

B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage,, Internat. J. of Prod. Managem., 34 (1994), 65.  doi: 10.1016/0925-5273(94)90047-7.  Google Scholar

[47]

J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151.  doi: 10.1080/02331934.2011.590485.  Google Scholar

[48]

J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors,, Computers and Mathematics with Applications, 63 (2012), 1007.  doi: 10.1016/j.camwa.2011.09.050.  Google Scholar

[49]

Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,, Comput. and Oper. Res., 35 (2008), 3562.  doi: 10.1016/j.cor.2007.01.024.  Google Scholar

[50]

H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,, Comp. Oper. Res., 22 (1995), 345.   Google Scholar

[51]

H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money,, Internat. J. Prod. Econ., 71 (2001), 213.  doi: 10.1016/S0925-5273(00)00121-3.  Google Scholar

[52]

K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging,, Internat. J. of Prod. Econ., 101 (2006), 369.  doi: 10.1016/j.ijpe.2005.01.010.  Google Scholar

[53]

C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging,, Math. Problems in Eng., 2009 (2009).  doi: 10.1155/2009/198305.  Google Scholar

[54]

J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment,, Journal of Industrial and Management Optimization, 10 (2014), 1261.  doi: 10.3934/jimo.2014.10.1261.  Google Scholar

[55]

S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting,, Eur. J. Oper. Res., 216 (2012), 105.  doi: 10.1016/j.ejor.2011.07.024.  Google Scholar

show all references

References:
[1]

P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering,, Managem. Sci., 42 (1996), 1093.  doi: 10.1287/mnsc.42.8.1093.  Google Scholar

[2]

P. L. Abad, Optimal price and order size for a reseller under partial backordering,, Comp. and Oper. Res., 28 (2001), 53.  doi: 10.1016/S0305-0548(99)00086-6.  Google Scholar

[3]

E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence,, Working paper, (2006).   Google Scholar

[4]

A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging,, Applied Mathematics and Computation, 232 (2014), 1125.  doi: 10.1016/j.amc.2014.01.115.  Google Scholar

[5]

J. A. Buzacott, Economic order quantity with inflation,, Operational Quarterly, 26 (1975), 553.  doi: 10.2307/3008214.  Google Scholar

[6]

C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat,, J. of Prod. Econ, 123 (2010), 62.   Google Scholar

[7]

H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,, Eur. J. Oper. Res., 168 (2005), 51.  doi: 10.1016/j.ejor.2004.05.003.  Google Scholar

[8]

J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions,, Eur. J. Oper. Res., 195 (2009), 280.  doi: 10.1016/j.ejor.2008.01.030.  Google Scholar

[9]

R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration,, AIIE Trans., 5 (1973), 323.  doi: 10.1080/05695557308974918.  Google Scholar

[10]

T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages,, Eur. J. Oper. Res., 52 (1991), 326.  doi: 10.1016/0377-2217(91)90167-T.  Google Scholar

[11]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,, Omega, 35 (2007), 184.  doi: 10.1016/j.omega.2005.05.002.  Google Scholar

[12]

C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach,, Comput. and Industrial Engineering, 52 (2007), 29.  doi: 10.1016/j.cie.2006.10.009.  Google Scholar

[13]

K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments,, J. of Comp. and Appl. Math., 223 (2010), 2492.  doi: 10.1016/j.cam.2009.10.031.  Google Scholar

[14]

P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,, Internat. J. of Prod. Res., 21 (1963), 449.   Google Scholar

[15]

A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios,, Proceedings of the Institution of Mechanical Engineers, 227 (2013), 1057.  doi: 10.1177/0954405413481452.  Google Scholar

[16]

M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns,, Journal of Industrial Engineering, 2013 (2013).  doi: 10.1155/2013/709083.  Google Scholar

[17]

M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns,, Optimization, 63 (2014), 1785.  doi: 10.1080/02331934.2013.853059.  Google Scholar

[18]

M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation,, to appear in Proceedings of the Institution of Mechanical Engineers, (2014).  doi: 10.1177/0954405414522215.  Google Scholar

[19]

B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon,, European Journal of Operational Research, 234 (2014), 683.  doi: 10.1016/j.ejor.2013.11.001.  Google Scholar

[20]

S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits,, Internat. J. of Systems Sci., 22 (1991), 197.  doi: 10.1080/00207729108910600.  Google Scholar

[21]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory,, Eur. J. Oper. Res., 134 (2001), 1.  doi: 10.1016/S0377-2217(00)00248-4.  Google Scholar

[22]

A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment,, Applied Mathematical Modeling, 37 (2013), 240.  doi: 10.1016/j.apm.2012.02.010.  Google Scholar

[23]

R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs,, IIE Trans., 24 (1992), 104.  doi: 10.1080/07408179208964207.  Google Scholar

[24]

M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand,, J. Oper. Res. Soc., 47 (1996), 1228.  doi: 10.2307/3010036.  Google Scholar

[25]

M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions,, Eur. J. Oper. Res., 89 (1996), 313.  doi: 10.1016/0377-2217(94)00256-8.  Google Scholar

[26]

K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate,, Comp. Ind. Eng., 20 (1991), 187.   Google Scholar

[27]

J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing,, J. of Direct Marketing, 11 (1997), 20.  doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0.  Google Scholar

[28]

I. Horowitz, EOQ and inflation uncertainty,, International Journal of Prod. Econ., 65 (2000), 217.  doi: 10.1016/S0925-5273(99)00034-1.  Google Scholar

[29]

K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation,, OPSEARCH, 50 (2013), 404.  doi: 10.1007/s12597-012-0115-0.  Google Scholar

[30]

T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,, Expert Syst. with Appl., 37 (2010), 7234.  doi: 10.1016/j.eswa.2010.04.004.  Google Scholar

[31]

C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand,, Int. J. Prod. Econ., 103 (2006), 707.  doi: 10.1016/j.ijpe.2006.01.004.  Google Scholar

[32]

R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand,, Int. J. Prod. Econ., 136 (2012), 116.  doi: 10.1016/j.ijpe.2011.09.020.  Google Scholar

[33]

R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging,, Math. and Comp. Modelling, 55 (2012), 1722.  doi: 10.1016/j.mcm.2011.11.017.  Google Scholar

[34]

A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,, Internat. J. of Systems Sci., 40 (2009), 21.  doi: 10.1080/00207720802088264.  Google Scholar

[35]

R. B. Misra, A note on optimal inventory management under inflation,, Naval Res. Logist. Quart., 26 (1979), 161.  doi: 10.1002/nav.3800260116.  Google Scholar

[36]

I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle,, Eur. J. Oper. Res., 125 (2000), 588.  doi: 10.1016/S0377-2217(99)00270-2.  Google Scholar

[37]

I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting,, Eur. J. Oper. Res., 162 (2005), 773.  doi: 10.1016/j.ejor.2003.09.025.  Google Scholar

[38]

A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments,, Internat. J. of Prod. Econ., 136 (2012), 75.  doi: 10.1016/j.ijpe.2011.09.013.  Google Scholar

[39]

L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments,, Comp. and Indust. Eng., 51 (2006), 637.  doi: 10.1016/j.cie.2006.07.012.  Google Scholar

[40]

L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase,, Journal of Industrial and Management Optimization, 9 (2013), 437.  doi: 10.3934/jimo.2013.9.437.  Google Scholar

[41]

K. S. Park, Inflationary effect on EOQ under trade-credit financing,, International Journal on Policy and Information, 10 (1986), 65.   Google Scholar

[42]

F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach,, Applied Mathematical Modelling, 37 (2013), 6683.  doi: 10.1016/j.apm.2012.12.020.  Google Scholar

[43]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Applied Mathematics and Computation, 217 (2011), 6159.  doi: 10.1016/j.amc.2010.12.098.  Google Scholar

[44]

B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model,, Expert Systems with Applications, 38 (2011), 13543.  doi: 10.1016/j.eswa.2011.04.044.  Google Scholar

[45]

B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration,, Int. J. Prod. Eco., 48 (1997), 227.  doi: 10.1016/S0925-5273(96)00107-7.  Google Scholar

[46]

B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage,, Internat. J. of Prod. Managem., 34 (1994), 65.  doi: 10.1016/0925-5273(94)90047-7.  Google Scholar

[47]

J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151.  doi: 10.1080/02331934.2011.590485.  Google Scholar

[48]

J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors,, Computers and Mathematics with Applications, 63 (2012), 1007.  doi: 10.1016/j.camwa.2011.09.050.  Google Scholar

[49]

Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,, Comput. and Oper. Res., 35 (2008), 3562.  doi: 10.1016/j.cor.2007.01.024.  Google Scholar

[50]

H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,, Comp. Oper. Res., 22 (1995), 345.   Google Scholar

[51]

H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money,, Internat. J. Prod. Econ., 71 (2001), 213.  doi: 10.1016/S0925-5273(00)00121-3.  Google Scholar

[52]

K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging,, Internat. J. of Prod. Econ., 101 (2006), 369.  doi: 10.1016/j.ijpe.2005.01.010.  Google Scholar

[53]

C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging,, Math. Problems in Eng., 2009 (2009).  doi: 10.1155/2009/198305.  Google Scholar

[54]

J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment,, Journal of Industrial and Management Optimization, 10 (2014), 1261.  doi: 10.3934/jimo.2014.10.1261.  Google Scholar

[55]

S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting,, Eur. J. Oper. Res., 216 (2012), 105.  doi: 10.1016/j.ejor.2011.07.024.  Google Scholar

[1]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[11]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[12]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[13]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[14]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (9)

[Back to Top]