-
Previous Article
Two approaches for solving mathematical programs with second-order cone complementarity constraints
- JIMO Home
- This Issue
-
Next Article
Clustering based polyhedral conic functions algorithm in classification
Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
1. | Department of Industrial Engineering, Karazmi University, Mofatteh Avenue, Tehran, Iran, Iran |
2. | Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey |
3. | Department of Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran |
References:
[1] |
P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering,, Managem. Sci., 42 (1996), 1093.
doi: 10.1287/mnsc.42.8.1093. |
[2] |
P. L. Abad, Optimal price and order size for a reseller under partial backordering,, Comp. and Oper. Res., 28 (2001), 53.
doi: 10.1016/S0305-0548(99)00086-6. |
[3] |
E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence,, Working paper, (2006). Google Scholar |
[4] |
A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging,, Applied Mathematics and Computation, 232 (2014), 1125.
doi: 10.1016/j.amc.2014.01.115. |
[5] |
J. A. Buzacott, Economic order quantity with inflation,, Operational Quarterly, 26 (1975), 553.
doi: 10.2307/3008214. |
[6] |
C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat,, J. of Prod. Econ, 123 (2010), 62. Google Scholar |
[7] |
H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,, Eur. J. Oper. Res., 168 (2005), 51.
doi: 10.1016/j.ejor.2004.05.003. |
[8] |
J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions,, Eur. J. Oper. Res., 195 (2009), 280.
doi: 10.1016/j.ejor.2008.01.030. |
[9] |
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration,, AIIE Trans., 5 (1973), 323.
doi: 10.1080/05695557308974918. |
[10] |
T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages,, Eur. J. Oper. Res., 52 (1991), 326.
doi: 10.1016/0377-2217(91)90167-T. |
[11] |
C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,, Omega, 35 (2007), 184.
doi: 10.1016/j.omega.2005.05.002. |
[12] |
C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach,, Comput. and Industrial Engineering, 52 (2007), 29.
doi: 10.1016/j.cie.2006.10.009. |
[13] |
K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments,, J. of Comp. and Appl. Math., 223 (2010), 2492.
doi: 10.1016/j.cam.2009.10.031. |
[14] |
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,, Internat. J. of Prod. Res., 21 (1963), 449. Google Scholar |
[15] |
A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios,, Proceedings of the Institution of Mechanical Engineers, 227 (2013), 1057.
doi: 10.1177/0954405413481452. |
[16] |
M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns,, Journal of Industrial Engineering, 2013 (2013).
doi: 10.1155/2013/709083. |
[17] |
M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns,, Optimization, 63 (2014), 1785.
doi: 10.1080/02331934.2013.853059. |
[18] |
M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation,, to appear in Proceedings of the Institution of Mechanical Engineers, (2014).
doi: 10.1177/0954405414522215. |
[19] |
B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon,, European Journal of Operational Research, 234 (2014), 683.
doi: 10.1016/j.ejor.2013.11.001. |
[20] |
S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits,, Internat. J. of Systems Sci., 22 (1991), 197.
doi: 10.1080/00207729108910600. |
[21] |
S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory,, Eur. J. Oper. Res., 134 (2001), 1.
doi: 10.1016/S0377-2217(00)00248-4. |
[22] |
A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment,, Applied Mathematical Modeling, 37 (2013), 240.
doi: 10.1016/j.apm.2012.02.010. |
[23] |
R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs,, IIE Trans., 24 (1992), 104.
doi: 10.1080/07408179208964207. |
[24] |
M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand,, J. Oper. Res. Soc., 47 (1996), 1228.
doi: 10.2307/3010036. |
[25] |
M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions,, Eur. J. Oper. Res., 89 (1996), 313.
doi: 10.1016/0377-2217(94)00256-8. |
[26] |
K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate,, Comp. Ind. Eng., 20 (1991), 187. Google Scholar |
[27] |
J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing,, J. of Direct Marketing, 11 (1997), 20.
doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0. |
[28] |
I. Horowitz, EOQ and inflation uncertainty,, International Journal of Prod. Econ., 65 (2000), 217.
doi: 10.1016/S0925-5273(99)00034-1. |
[29] |
K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation,, OPSEARCH, 50 (2013), 404.
doi: 10.1007/s12597-012-0115-0. |
[30] |
T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,, Expert Syst. with Appl., 37 (2010), 7234.
doi: 10.1016/j.eswa.2010.04.004. |
[31] |
C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand,, Int. J. Prod. Econ., 103 (2006), 707.
doi: 10.1016/j.ijpe.2006.01.004. |
[32] |
R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand,, Int. J. Prod. Econ., 136 (2012), 116.
doi: 10.1016/j.ijpe.2011.09.020. |
[33] |
R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging,, Math. and Comp. Modelling, 55 (2012), 1722.
doi: 10.1016/j.mcm.2011.11.017. |
[34] |
A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,, Internat. J. of Systems Sci., 40 (2009), 21.
doi: 10.1080/00207720802088264. |
[35] |
R. B. Misra, A note on optimal inventory management under inflation,, Naval Res. Logist. Quart., 26 (1979), 161.
doi: 10.1002/nav.3800260116. |
[36] |
I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle,, Eur. J. Oper. Res., 125 (2000), 588.
doi: 10.1016/S0377-2217(99)00270-2. |
[37] |
I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting,, Eur. J. Oper. Res., 162 (2005), 773.
doi: 10.1016/j.ejor.2003.09.025. |
[38] |
A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments,, Internat. J. of Prod. Econ., 136 (2012), 75.
doi: 10.1016/j.ijpe.2011.09.013. |
[39] |
L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments,, Comp. and Indust. Eng., 51 (2006), 637.
doi: 10.1016/j.cie.2006.07.012. |
[40] |
L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase,, Journal of Industrial and Management Optimization, 9 (2013), 437.
doi: 10.3934/jimo.2013.9.437. |
[41] |
K. S. Park, Inflationary effect on EOQ under trade-credit financing,, International Journal on Policy and Information, 10 (1986), 65. Google Scholar |
[42] |
F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach,, Applied Mathematical Modelling, 37 (2013), 6683.
doi: 10.1016/j.apm.2012.12.020. |
[43] |
B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Applied Mathematics and Computation, 217 (2011), 6159.
doi: 10.1016/j.amc.2010.12.098. |
[44] |
B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model,, Expert Systems with Applications, 38 (2011), 13543.
doi: 10.1016/j.eswa.2011.04.044. |
[45] |
B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration,, Int. J. Prod. Eco., 48 (1997), 227.
doi: 10.1016/S0925-5273(96)00107-7. |
[46] |
B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage,, Internat. J. of Prod. Managem., 34 (1994), 65.
doi: 10.1016/0925-5273(94)90047-7. |
[47] |
J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151.
doi: 10.1080/02331934.2011.590485. |
[48] |
J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors,, Computers and Mathematics with Applications, 63 (2012), 1007.
doi: 10.1016/j.camwa.2011.09.050. |
[49] |
Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,, Comput. and Oper. Res., 35 (2008), 3562.
doi: 10.1016/j.cor.2007.01.024. |
[50] |
H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,, Comp. Oper. Res., 22 (1995), 345. Google Scholar |
[51] |
H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money,, Internat. J. Prod. Econ., 71 (2001), 213.
doi: 10.1016/S0925-5273(00)00121-3. |
[52] |
K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging,, Internat. J. of Prod. Econ., 101 (2006), 369.
doi: 10.1016/j.ijpe.2005.01.010. |
[53] |
C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging,, Math. Problems in Eng., 2009 (2009).
doi: 10.1155/2009/198305. |
[54] |
J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment,, Journal of Industrial and Management Optimization, 10 (2014), 1261.
doi: 10.3934/jimo.2014.10.1261. |
[55] |
S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting,, Eur. J. Oper. Res., 216 (2012), 105.
doi: 10.1016/j.ejor.2011.07.024. |
show all references
References:
[1] |
P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering,, Managem. Sci., 42 (1996), 1093.
doi: 10.1287/mnsc.42.8.1093. |
[2] |
P. L. Abad, Optimal price and order size for a reseller under partial backordering,, Comp. and Oper. Res., 28 (2001), 53.
doi: 10.1016/S0305-0548(99)00086-6. |
[3] |
E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence,, Working paper, (2006). Google Scholar |
[4] |
A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging,, Applied Mathematics and Computation, 232 (2014), 1125.
doi: 10.1016/j.amc.2014.01.115. |
[5] |
J. A. Buzacott, Economic order quantity with inflation,, Operational Quarterly, 26 (1975), 553.
doi: 10.2307/3008214. |
[6] |
C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat,, J. of Prod. Econ, 123 (2010), 62. Google Scholar |
[7] |
H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,, Eur. J. Oper. Res., 168 (2005), 51.
doi: 10.1016/j.ejor.2004.05.003. |
[8] |
J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions,, Eur. J. Oper. Res., 195 (2009), 280.
doi: 10.1016/j.ejor.2008.01.030. |
[9] |
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration,, AIIE Trans., 5 (1973), 323.
doi: 10.1080/05695557308974918. |
[10] |
T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages,, Eur. J. Oper. Res., 52 (1991), 326.
doi: 10.1016/0377-2217(91)90167-T. |
[11] |
C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,, Omega, 35 (2007), 184.
doi: 10.1016/j.omega.2005.05.002. |
[12] |
C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach,, Comput. and Industrial Engineering, 52 (2007), 29.
doi: 10.1016/j.cie.2006.10.009. |
[13] |
K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments,, J. of Comp. and Appl. Math., 223 (2010), 2492.
doi: 10.1016/j.cam.2009.10.031. |
[14] |
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,, Internat. J. of Prod. Res., 21 (1963), 449. Google Scholar |
[15] |
A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios,, Proceedings of the Institution of Mechanical Engineers, 227 (2013), 1057.
doi: 10.1177/0954405413481452. |
[16] |
M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns,, Journal of Industrial Engineering, 2013 (2013).
doi: 10.1155/2013/709083. |
[17] |
M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns,, Optimization, 63 (2014), 1785.
doi: 10.1080/02331934.2013.853059. |
[18] |
M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation,, to appear in Proceedings of the Institution of Mechanical Engineers, (2014).
doi: 10.1177/0954405414522215. |
[19] |
B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon,, European Journal of Operational Research, 234 (2014), 683.
doi: 10.1016/j.ejor.2013.11.001. |
[20] |
S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits,, Internat. J. of Systems Sci., 22 (1991), 197.
doi: 10.1080/00207729108910600. |
[21] |
S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory,, Eur. J. Oper. Res., 134 (2001), 1.
doi: 10.1016/S0377-2217(00)00248-4. |
[22] |
A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment,, Applied Mathematical Modeling, 37 (2013), 240.
doi: 10.1016/j.apm.2012.02.010. |
[23] |
R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs,, IIE Trans., 24 (1992), 104.
doi: 10.1080/07408179208964207. |
[24] |
M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand,, J. Oper. Res. Soc., 47 (1996), 1228.
doi: 10.2307/3010036. |
[25] |
M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions,, Eur. J. Oper. Res., 89 (1996), 313.
doi: 10.1016/0377-2217(94)00256-8. |
[26] |
K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate,, Comp. Ind. Eng., 20 (1991), 187. Google Scholar |
[27] |
J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing,, J. of Direct Marketing, 11 (1997), 20.
doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0. |
[28] |
I. Horowitz, EOQ and inflation uncertainty,, International Journal of Prod. Econ., 65 (2000), 217.
doi: 10.1016/S0925-5273(99)00034-1. |
[29] |
K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation,, OPSEARCH, 50 (2013), 404.
doi: 10.1007/s12597-012-0115-0. |
[30] |
T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,, Expert Syst. with Appl., 37 (2010), 7234.
doi: 10.1016/j.eswa.2010.04.004. |
[31] |
C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand,, Int. J. Prod. Econ., 103 (2006), 707.
doi: 10.1016/j.ijpe.2006.01.004. |
[32] |
R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand,, Int. J. Prod. Econ., 136 (2012), 116.
doi: 10.1016/j.ijpe.2011.09.020. |
[33] |
R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging,, Math. and Comp. Modelling, 55 (2012), 1722.
doi: 10.1016/j.mcm.2011.11.017. |
[34] |
A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,, Internat. J. of Systems Sci., 40 (2009), 21.
doi: 10.1080/00207720802088264. |
[35] |
R. B. Misra, A note on optimal inventory management under inflation,, Naval Res. Logist. Quart., 26 (1979), 161.
doi: 10.1002/nav.3800260116. |
[36] |
I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle,, Eur. J. Oper. Res., 125 (2000), 588.
doi: 10.1016/S0377-2217(99)00270-2. |
[37] |
I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting,, Eur. J. Oper. Res., 162 (2005), 773.
doi: 10.1016/j.ejor.2003.09.025. |
[38] |
A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments,, Internat. J. of Prod. Econ., 136 (2012), 75.
doi: 10.1016/j.ijpe.2011.09.013. |
[39] |
L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments,, Comp. and Indust. Eng., 51 (2006), 637.
doi: 10.1016/j.cie.2006.07.012. |
[40] |
L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase,, Journal of Industrial and Management Optimization, 9 (2013), 437.
doi: 10.3934/jimo.2013.9.437. |
[41] |
K. S. Park, Inflationary effect on EOQ under trade-credit financing,, International Journal on Policy and Information, 10 (1986), 65. Google Scholar |
[42] |
F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach,, Applied Mathematical Modelling, 37 (2013), 6683.
doi: 10.1016/j.apm.2012.12.020. |
[43] |
B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Applied Mathematics and Computation, 217 (2011), 6159.
doi: 10.1016/j.amc.2010.12.098. |
[44] |
B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model,, Expert Systems with Applications, 38 (2011), 13543.
doi: 10.1016/j.eswa.2011.04.044. |
[45] |
B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration,, Int. J. Prod. Eco., 48 (1997), 227.
doi: 10.1016/S0925-5273(96)00107-7. |
[46] |
B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage,, Internat. J. of Prod. Managem., 34 (1994), 65.
doi: 10.1016/0925-5273(94)90047-7. |
[47] |
J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151.
doi: 10.1080/02331934.2011.590485. |
[48] |
J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors,, Computers and Mathematics with Applications, 63 (2012), 1007.
doi: 10.1016/j.camwa.2011.09.050. |
[49] |
Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,, Comput. and Oper. Res., 35 (2008), 3562.
doi: 10.1016/j.cor.2007.01.024. |
[50] |
H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,, Comp. Oper. Res., 22 (1995), 345. Google Scholar |
[51] |
H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money,, Internat. J. Prod. Econ., 71 (2001), 213.
doi: 10.1016/S0925-5273(00)00121-3. |
[52] |
K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging,, Internat. J. of Prod. Econ., 101 (2006), 369.
doi: 10.1016/j.ijpe.2005.01.010. |
[53] |
C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging,, Math. Problems in Eng., 2009 (2009).
doi: 10.1155/2009/198305. |
[54] |
J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment,, Journal of Industrial and Management Optimization, 10 (2014), 1261.
doi: 10.3934/jimo.2014.10.1261. |
[55] |
S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting,, Eur. J. Oper. Res., 216 (2012), 105.
doi: 10.1016/j.ejor.2011.07.024. |
[1] |
Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437 |
[2] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002 |
[3] |
Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095 |
[4] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098 |
[5] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Deteriorating inventory with preservation technology under price- and stock-sensitive demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-28. doi: 10.3934/jimo.2019019 |
[6] |
Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769 |
[7] |
Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096 |
[8] |
Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261 |
[9] |
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 |
[10] |
Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020138 |
[11] |
Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1317-1344. doi: 10.3934/jimo.2018097 |
[12] |
Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153 |
[13] |
Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083 |
[14] |
Konstantina Skouri, Ioannis Konstantaras. Two-warehouse inventory models for deteriorating products with ramp type demand rate. Journal of Industrial & Management Optimization, 2013, 9 (4) : 855-883. doi: 10.3934/jimo.2013.9.855 |
[15] |
Sankar Kumar Roy, Magfura Pervin, Gerhard Wilhelm Weber. Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019032 |
[16] |
Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091 |
[17] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019126 |
[18] |
Zhijie Sasha Dong, Wei Chen, Qing Zhao, Jingquan Li. Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2018175 |
[19] |
Yu-Chung Tsao. Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits. Journal of Industrial & Management Optimization, 2017, 13 (1) : 329-347. doi: 10.3934/jimo.2016020 |
[20] |
Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]